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EDITORIAL 

 

Age is linked to pathological conditions and diminished physiological functions. These include 

neurological and immune decline, hematological disorders such as myeloproliferative 

disorders, and cardiac dysfunction. It is unclear if the decline occurs by dysfunction in stem 

cells or if there is a decline in the tissue niche that can no longer support the resident stem 

cells. This special issue invites papers related to the broad topics of aging and also welcome 

papers that discuss if aging can be druggable. In this regard, papers describing the 

complexity of aging would enhance this series. Papers are also welcome on specific diseases.   
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Abstract
Mesenchymal stem cells belong to one of the multipotent stem cell types isolated from almost all tissues in the 
human body. They function to maintain tissue homeostasis with their highly proliferative property, and they 
also possess immunomodulatory properties. The properties of mesenchymal stem cells can be influenced by 
multiple factors, among which donor ages have been indicated negatively correlated with the proliferation, 
migration, and differentiation of mesenchymal stem cells. Telomerase activity, telomere length, and cell senes-
cence have been studied to understand the mechanisms of the age effect on mesenchymal stem cell proper-
ties. Rejuvenation treatments are the critical research direction to attenuate the deterioration of mesenchymal 
stem cell properties by the age effect. This review article summarized the updated research on the impact and 
mechanisms of aging and age-related factors on different mesenchymal stem cell properties. In addition, the 
treatments to rejuvenate the aged mesenchymal stem cells will also be discussed. This review article aims to 
enlighten scientific researchers in better preparing and nursing the autologous mesenchymal stem cells from 
the elderly for future applications in tissue engineering and regenerative medicine.
Keywords: Mesenchymal stem cells, aging, proliferation, migration, differentiation
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Introduction

Stem cells belong to the undifferentiated cells with the 
ability to self-renewal and differentiation into mature cells. 
They are essential for tissue growth, development, and 

homeostasis. Adult stem cells refer to the stem cells found 
in the developed tissues, and they function to maintain 
adult tissue specificity by homeostatic cell replacement 
and tissue regeneration [1]. They are presumed to be inac-
tive within the adult tissues, but they can be stimulated to 
divide into a stem cell clone and a transiently amplifying 
cell. The latter will undergo limited divisions before ter-
minally differentiating into mature functional tissue cells. 
Because of lineage-restricted differentiation for adult stem 
cells, different types of adult stem cells are equipped with 
specific functions in different tissues and organs. Apart 
from the most-studied blood-forming hematopoietic stem 
cells (HSCs) [2], mesenchymal stem cells (MSCs), also 
known as marrow stromal cells, belong to another mul-
tipotent adult stem cell population with potentials differ-
entiating into the mesodermal lineages, including adipo-
cytes, chondrocytes, and osteocytes [3]. Although MSCs 
were first identified in bone marrow, they reside within the 
connective tissues of many organs, including adipose tis-
sue, umbilical cord, and teeth [4]. MSCs isolated from the 
fetal tissues, including the umbilical cord, umbilical cord 
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blood, Wharton’s jelly, placenta, and amniotic membrane, 
are considered the fetal MSCs, and the alternative is con-
sidered adult MSCs. Human MSCs can be sorted with the 
positive selection by CD29, CD44, CD73, CD90, CD105, 
CD146, and STRO-1 as well as the negative selection by 
CD31, CD34, CD45, CD49f, and CD133 [5]. Apart from 
the expression of specific cell surface markers, MSCs 
are also defined to be growing in adherence to the plastic 
surface while maintained in standard culture conditions 
and are capable to be in vitro induced into mesenchymal 
lineages with the appropriate medium as recommended by 
the International Society of Cellular Therapy [6]. 
MSCs have been applied as a therapeutic agent for the 
treatment of various diseases, such as cardiovascular [7] 
and neurodegenerative diseases [8, 9]. Autologous MSCs 
are developed from the patients themselves without im-
mune rejection, whereas allogeneic MSCs are established 
from the selected donors allowing expansion on a large 
scale and cryopreservation to provide a readily available 
source of stem cells. Current allogeneic volunteer MSC 
donors mostly are of a young age [10]. Yet, there are sub-
stantial pieces of evidence demonstrating the aging pro-
cess adversely affects the properties of MSCs [11]. The 
impacts of age and age-related factors on the MSC prop-
erties are of great importance for autologous or allogeneic 
MSC transplantation, especially among the elderly. In this 
review article, we will summarize the donor age effect on 
MSC properties, together with the underlying molecular 
mechanisms. In addition, the treatments attenuating or de-
laying the age effect on MSCs will also be discussed.

Age effect on mesenchymal stem cell yield 
from tissues

A study on MSCs derived from anterior cruciate ligaments 
demonstrated that the mean proportion of isolated MSCs 
was slightly but significantly higher in older donors (67.96 
± 5.22 years) than the younger donors (29.67 ± 10.92 
years) [12]. In contrast, a study on MSCs in adipose-
derived stromal vascular fraction reported a negative cor-
relation of MSC count with donor age [13]. Yet, human 
adipose-derived MSCs harvested from the same subjects 
with a time window of 7 to 12 years apart (initial age of 
the 3 donors: 17, 21, and 72 years old) show no signifi-
cant difference was found in cell yield, stromal-vascular 
fraction subpopulation, proliferation, and tri-lineage dif-
ferentiation [14]. These studies indicated that the effect 
of donor ages on the cell yield of MSCs harvested from 
donor tissues is still controversial.

Age effect on mesenchymal stem cell surface 
marker expression

A study reported that the subpopulations of bone marrow-
derived MSCs harvested from younger donors are com-
posed of more CD71+, CD146+, and CD274+ MSCs than 
that from older donors, and the fluorescence per cell of 

CD71, CD90, CD106, CD140b, CD146, CD166, and 
CD274 is negatively correlated with the donor age [15]. 
Similarly, human bone marrow-derived MSCs express 
CD13, CD44, CD90, CD105, and Stro-1 regardless of 
age, but those from the donors over 40 years old showed 
significantly lower expression of CD90, CD105, and Stro-
1 [16]. Moreover, lower SSEA-4 expression was found 
in the elderly bone marrow-derived MSCs as compared 
to the young MSCs [17]. Consistently, our previous study 
also reported that lower expression of SSEA4 was found 
in human MSCs derived from periodontal ligaments with 
a donor age of > 40 years old as compared to those with 
a donor age of ≤ 20 years old [18]. In contrast, no sig-
nificant difference in cell surface marker expression was 
reported in bone marrow-derived MSCs from the pediat-
ric and adult donors [19]. Human adipose-derived MSCs 
from all age groups also show comparable expression of 
CD3, CD14, CD19, CD34, CD44, CD45, CD73, CD90, 
and CD105 [20]. The effect of donor ages on MSC marker 
expression could be exhibited in donors with older ages.

Age effect on mesenchymal stem cell prolifera-
tion

MSC proliferation is related to the availability and abun-
dance of stem cells present to exert a regenerative effect. 
The number of colony-forming unit-fibroblasts (CFU-F) 
colonies with alkaline phosphatase (ALP) activity in bone 
marrow-derived MSCs of younger donors (3–36 years 
old) is significantly higher than that of the older donors (41 
–70 years old) [21]. Consistently, there is a significant de-
cline in the CFU-F number in bone marrow-derived MSCs 
from older donors (21–40 years old) as compared to 
younger donors (0–20 years old) [16]. Similar results were 
also observed in adipose-derived stem cells that a 30% 
decline in CFU numbers and with 38% increase in popu-
lation doubling time from the donors with age > 50 years 
old as compared to those with age < 20 years old [22]. 
Moreover, the cumulative population doubling of bone 
marrow-derived MSCs from pediatric donors is twice that 
of young adult donors [19], and the doubling time is 1.7-
fold longer in bone marrow-derived MSCs from the older 
subjects as compared to the younger subjects [23]. In ad-
dition, our previous study also found that human MSCs 
derived from periodontal ligaments with a donor aged ≤ 
20 years old show significantly higher proliferation than 
that of a donor aged 21–40 years old and > 40 years old 
[18]. On the contrary, no significant differences in CFU 
numbers of bone marrow-derived MSCs among differ-
ent donor ages were also reported [24-26]. Interestingly, 
umbilical cord-derived MSCs from older mothers also 
show lower proliferative and colony-forming capacity as 
compared to those from younger mothers [27]. Yet, other 
studies demonstrated that human fetal membrane-derived 
MSCs from older mothers show a higher proliferation rate 
than those from younger mothers [28]. Collectively, there 
are prominent pieces of evidence that the proliferation of 
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MSCs would be reduced in donors of older ages.

Age effect on mesenchymal stem cell migration

The movement of stem cells and their capacity to migrate 
to injury sites are the determining factors of stem cell 
regenerative potentials. The migration ability of human 
adipose-derived MSCs is significantly decreased in the 
elderly donors as compared to the child donors with a 
significant reduction in CXCR4 and CXCR7 expression in 
the elderly group [29]. Moreover, the migratory activity of 
human periodontal ligament-derived MSCs with a donor 
age of 56–75 years old is significantly decreased as com-
pared to those with a donor age of 16–30 years old [30]. 
Consistently, our previous study also demonstrated that 
human periodontal ligament-derived MSCs with donor 
age > 40 years old show significantly lower migration as 
compared to that with donor age ≤ 20 years old and 20– 
40 years old, accompanied by lower expression of PTK2 
in the periodontal ligament-derived MSCs with donor 
age > 40 years old [18]. Notably, bone marrow from the 
aged mice can induce a slower migration ability of murine 
MSC cell line C3H10T1/2 as compared to that from the 
young mice [31]. Collectively, aging, together with the 
aged tissue microenvironment, could reduce the migration 
ability of MSCs.

Age effect on mesenchymal stem cell differen-
tiation

MSCs, equipped with multipotent differentiation potential, 
can give rise to mesenchyme tissue cells, including adi-
pocytes, osteoblasts, chondrocytes, myocytes, and cardio-
myocytes. As compared to the younger adipose-derived 
MSCs, the aged MSCs show decreased chondrogenic and 
osteogenic potential, but are in favor of shifting towards 
adipogenic differentiation with increasing age [32]. Yet, 
another study reported that the osteogenic and chondro-
genic potentials of adipose-derived MSCs decline with the 
donor age, but the adipogenic potential of adipose-derived 
MSCs is independent of the donor age [20]. Advancing 
age has been demonstrated to have a significant negative 
effect on the adipogenic and osteogenic differentiation 
potentials of human adipose-derived MSCs [29], while no 
differences in the differentiation efficiency in adipogenesis 
and osteogenesis between young (≤ 35 years old) and old 
(≥ 55 years old) adipose-derived MSCs have also been 
reported [33]. In contrast, the adipogenic and osteogenic 
potentials of bone marrow-derived MSCs decrease with 
increasing age while the chondrogenic potential did not 
change [34]. Besides, the osteogenic differentiation of 
bone marrow-derived MSCs is more affected by age than 
the adipose-derived MSCs [35]. No significant differ-
ences in the osteogenic differentiation capacity of bone 
marrow-derived MSCs between young and aged donors 
have also been reported [15, 26]. Under a moderate level 
of inflammatory stimuli, osteogenic differentiation of 

bone marrow-derived MSCs from elderly donors could be 
greatly diminished, and adipogenic differentiation remains 
unchanged, while the bone marrow-derived MSCs from 
young and intermediately aged donors show better osteo-
genic differentiation but reduced adipogenic differentia-
tion [36]. For human periodontal ligament-derived MSCs, 
the osteogenic and adipogenic differentiation capacities of 
human periodontal ligament-derived MSCs are reduced 
when age increases [30]. Consistently, our previous study 
demonstrated that the osteogenic, chondrogenic, and ad-
ipogenic differentiation abilities of human periodontal 
ligament-derived MSCs with donor age > 40 years old 
are all reduced as compared to those with donor age ≤ 20 
years old [18]. Collectively, the age effect on the differen-
tiation of different mesodermal lineages of MSCs could be 
dependent on the originated cell sources and the microen-
vironments.
Apart from mesodermal lineage differentiation, we have 
previously demonstrated that human periodontal ligament-
derived MSCs and adipose-derived MSCs can be induced 
into neural and retinal lineages [37-39]. It has been re-
ported that the neuroectodermal differentiation potential 
of human bone marrow-derived MSCs from old donors 
(> 45 years old) is completely lost, with no cells showing 
mature neuroectodermal phenotypes and fewer cells ex-
pressing early neuroectodermal marker proteins as com-
pared to that of the young donors (18–35 years old) [40]. 
Yet, additional studies are needed to validate the age effect 
on the neural differentiation of MSCs.

Age effect on immunomodulation of mesen-
chymal stem cells

The allogeneic transplantation of MSCs can be achieved 
because of the immunomodulatory properties of MSCs. It 
has been reported that adult adipose-derived MSCs (< 65 
years old) inhibit the activated CD4+ T-lymphocytes more 
effectively than elderly adipose-derived MSCs (≥ 65 years 
old) with increasing mean CD4+ T-lymphocyte prolifera-
tion by 0.5 % for any 1-year increase in age [41]. How-
ever, it was also shown that gingival tissue-derived MSCs 
display effective immunoregulation in a mouse model of 
lipopolysaccharide-induced acute lung injury irrespective 
of donor age [42]. Similarly, human dental pulp-derived 
MSCs have been shown effectively regulate the CD4+ T 
cells; yet, their effects on Th1 and Th2 cells are not af-
fected by the donor ages [43]. In mouse, the aged MSCs 
presented with a lower immunomodulatory property to 
induce T cell apoptosis in the co-culture system as com-
pared to the young MSCs [44]. For our previous study, we 
demonstrated that human periodontal ligament-derived 
MSCs with donors ages 20–40 and > 40 years old show 
higher IL6 and CXCL8 expression [18]. Elevated expres-
sions of IL6 and CXCL8 are also reported in adult MSCs 
as compared with pediatric MSCs [45]. These could in-
dicate that the microenvironment around the aged MSCs 
could be inflammatory, reflected by the accumulation of 
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inflammatory T and B lymphocytes [44].

Age effect on the neuroprotective effect of 
mesenchymal stem cells

We have previously demonstrated that human periodontal 
ligament-derived MSCs can protect retinal ganglion cells 
from optic nerve injury by secreting the brain-derived 
neurotrophic factor and interacting with the host cells in 
the retina [46]. It has been reported that bone marrow-de-
rived MSCs from both young (16–18 years) and old (67–75 
years) donors in a co-culture system significantly enhance 
total neurite length of dorsal root ganglia neurons, and 
only the MSCs from young donors, but not the old donors, 
can further be potentiated by the treatment of growth fac-
tors [47]. Moreover, under the culture with a conditioned 
medium of bone marrow-derived MSCs, the rescue ability 
of MSCs on the reduced survival of rat cortical neurons 
by trophic factor withdrawal decrease with increasing 
MSC donor age [48]. In addition, it has been suggested 
that the composition of the secreted bio-active materials 
of MSCs derived from human tooth germ is influenced by 
the passage number of the cells [49]. These indicate that 
increasing MSC age could weaken its ability to neuro-
trophic factor secretion and compositions, which leads to 
the reduced neuroprotective effect of the aged MSCs.

Molecular mechanisms of age effect on mesen-
chymal stem cells

Telomere length

The length of the telomere is an indicator of the mitotic 
capacity of a cell. Telomere shortening is considered a 
hallmark of stem cell aging [50]. It has been reported that 
the infant adipose-derived MSCs exhibited longer telo-
mere lengths than the elderly MSCs [51]. Consistently, 
our previous study demonstrated that human periodontal 
ligament-derived MSCs with a donor age > 40 years old 
have shorter telomere lengths than those with a donor age 
≤ 20 years old [18]. However, the same telomere length, 
regardless of the donor’s age, has also been demonstrated 
in human adipose-derived MSCs [52]. Similarly, no dif-
ference in telomere length was found in bone marrow-
derived MSCs from younger (8 months–6 years old) and 
older (38–58 years old) donors [53]. The telomere lengths 
in native bone marrow-derived MSC are also not related 
to the ages of the donors [54]. In placenta-derived MSCs, 
the telomere lengths could be related to cell division 
rather than the aging of the mothers [55]. Collectively, the 
role of telomere length in the age effect on MSC proper-
ties is still controversial.

Telomerase activity

Telomerase (telomere terminal transferase) is a reverse 
transcriptase responsible for maintaining the telomere 
length via de novo telomere synthesis [56]. Telomerase 

activity is related to the proliferation capability of MSCs 
[57]. Low levels of telomerase activity were reported in 
bone marrow-derived MSCs in a study [54], and another 
study reported no telomerase activity is detected in bone 
marrow-derived MSCs from different ages of human 
donors [15]. Yet, the analysis of the microarray datasets 
GSE97311 and GSE68374 revealed that some of the down-
regulated genes in the aged adult bone marrow-derived 
MSCs are involved in the telomerase activity as compared 
to the fetal MSCs [58]. In addition, telomerase expression 
was reported to be lower in bone marrow-derived MSCs 
from the adult rats as compared to that from the young 
rats [59]. The role of telomerase activity in the age effect 
on MSC properties requires further investigations.

Cell senescence 

Cellular senescence is a special form of durable cell cycle 
arrest, leading to the gradual decline in the ability of cell 
proliferation, differentiation, and physiological function 
over time. Senescent cells are characterized by durable 
growth arrest, expressions of anti-proliferative molecules, 
such as p16INK4a, and activation of damage-sensing signal-
ing pathways, including p38 and NF-κB [60]. A significant 
increase in quiescence of the G2 and S phase was reported 
in adipose-derived MSCs from the aged donors with in-
creased expression of CHEK1 and p16INK4a genes with 
age [22]. The donor age of adipose-derived MSCs is as-
sociated with an increase in the expression of senescence-
associated β-galactosidase staining with p16 and p21 gene 
expression higher in adipose-derived MSCs from the aged 
donors (> 50 years) than the young donor (< 40 years) [20]. 
The increase in senescence-associated β-galactosidase-
positive cells in the elderly human adipose-derived 
mesenchymal stem cells is accompanied by increased 
mitochondrial-specific reactive oxygen species production 
and the p21 expression [29]. Similarly, the percentage of 
senescence-associated β-galactosidase-positive cells is tre-
mendously increased in bone marrow-derived MSCs from 
the aged donors (> 60 years old) as compared to the young 
donors (< 30 years old) [61]. Moreover, the numbers of 
p21-positive and p53-positive cells were also found to 
be significantly higher in bone marrow-derived MSCs 
from the aged donors (> 40 years old) as compared to the 
young donors (7–18 years old) [16]. Critically, NAP1L2 
is a regulator for cell senescence of bone marrow-derived 
MSCs through the activation of the NF-κB pathway [62], 
whereas follistatin is a marker for human bone marrow-
derived MSC aging [63]. For the gingival tissue-derived 
MSCs, an increase in p53 and sirtuin-1 expression was 
shown in MSCs from the elderly donors (59–80 years 
old) as compared to the young donors (13–31 years old) 
[42]. Yet, no evidence of cellular senescence was reported 
in bone marrow-derived MSCs from pediatric and adult 
donors [19]. Collectively, the pieces of evidence of the 
involvement of cell senescence in the age effect of MSC 
properties are substantial (Figure 1).
A hallmark of aging is chronic, low-grade, “sterile” in-
flammation [64]. Cellular senescence is associated with 
the production of pro-inflammatory chemokines, cyto-
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kines, and extracellular matrix remodeling proteases, 
which comprise the senescence-associated secretory phe-
notype (SASP) [65]. Accumulation of senescent fat pro-
genitor cells has been found in adipose tissue with aging, 
and the senescent cells acquire SASP and provoke inflam-
mation in adipose tissue with JAK pathway activation in 
adipose tissue with aging [66]. Exposure to TNF-α could 
induce the upregulation of SASP components in adipose-
derived MSCs, including interleukin (IL)-6, IL-8, and 
monocyte chemoattractant protein 1 (MCP-1) [67]. It has 
been reported that transplanting relatively small numbers 
of senescent cells into young mice is sufficient to spread 
cellular senescence to host tissues and cause persistent 
physical dysfunction [68], indicating the endocrine effects 
of the senescent cells. Consistently, transplanting adipose-
derived MSCs from old donors, but not from young do-
nors, induces physical dysfunction in older recipient mice 
owing to a naturally occurring senescent cell-like popula-
tion in adipose-derived MSCs primarily from old donors 
[69]. Therefore, the senescent MSCs could limit the ap-
plication of exogenous autologous delivery of MSCs from 
aged donors and impose a potential risk to the shortening 
of the health- and lifespan of the recipients. Rejuvenation 
of the senescent MSCs could be helpful to improve au-
tologous MSC transplantation in elderly individuals.

Rejuvenation of the aged mesenchymal stem 
cells

Rejuvenation refers to the restoration of youthful vigor. 
Multiple strategies have been studied to rejuvenate the 
aged mesenchymal stem cells (Figure 2) to improve their 
properties for treatments.

Sorting of juvenile subpopulations 

MSCs are heterogeneous in the population [1]. We have 
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previously isolated the pluripotent neural crest subpopu-
lation from human periodontal ligament-derived MSCs 
[70], suggesting that there could be “juvenile” cells resid-
ing in the aged MSCs as a rare subpopulation. Consistent 
with our study, 8% of the SSEA-4-positive subpopulation 
was identified in human bone marrow-derived MSCs 
from elderly donors and exhibits a “youthful” phenotype 
that is similar to that of young MSCs with the number 
of cells increased by 17,000 folds [17]. Moreover, it has 
been shown that the sorted CD264+ human bone marrow-
derived MSCs have elevated β-galactosidase activity, 
decreased differentiation potential, and are inefficient in 
colony formation relative to the CD264- MSCs [71], indi-
cating that CD264- is a selection method for the “juvenile” 
MSCs. Yet, CD271 might not be the marker for the isola-
tion of the “juvenile” cells from the aged MSCs [72].

Senotherapeutics

Senotherapeutics refers to a strategy targeting cellular se-
nescence to delay the aging process. Senotherapeutics are 
composed of analytics (selectively inducing senescent cell 
death) and xenomorphic (indirectly suppressing senes-
cence by inhibiting SASP to delay the progression of se-
nescence and tissue dysfunction) [73]. Treatment with da-
satinib significantly increases the number of apoptotic PE-
adipose-derived MSCs from women with preeclampsia 
as compared to those from normotensive pregnancies by 
decreasing the gene expression of p16 and SASP compo-
nents [67]. Cocktail treatment of dasatinib and quercetin 
can decrease the number of naturally occurring senescent 
cells and their secretion of frailty-related pro-inflammato-
ry cytokines in explants of human adipose tissue [68], and 
improve the osteogenic capacity of bone marrow-derived 
MSCs from the aged mice [74]. Navitoclax (ABT-263) 
has been demonstrated with a moderate senolytic effect on 
senescent human bone marrow-derived MSCs by reducing 
the senescence-associated β-galactosidase expression [75], 

Figure 1. Cell senescence in aged mesenchymal stem cells. Increase in senescence-associated β-galactosidase staining, quiescence of G2 and S 
phases, expressions of p16, p21, p38, p53, and sirtuin-1, activation of nuclear factor-κB (NF-κB), nucleosome assembly protein 1 like 2 (NAP1L2), 
follistatin, and senescence-associated secretory phenotype (SASP) have been shown contributing to cell senescence in the aged mesenchymal stem 
cells (MSCs).
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whereas metformin reduces the replicative senescence and 
cell death associated with the prolonged cultivation of hu-
man adipose-derived MSCs [76]. Moreover, piceatannol 
has been shown to reduce the number of senescent human 
bone marrow-derived MSCs after genotoxic stress and in 
senescent replicative cultures by promoting the recovery 
of cell proliferation and the stemness of MSCs [77]. Simi-
larly, largazole and trichostatin A, the histone deacetylase 
inhibitors, can improve human umbilical cord-derived 
MSCs proliferation and delay its aging [78]. In addition, 
rapamycin has also been reported to reverse the senes-
cent phenotype and improve the immunoregulation of 
human bone marrow-derived MSCs from systemic lupus 
erythematosus patients by inhibiting the mTOR signaling 
pathway [79]. Collectively, senotherapeutics should be a 
promising and emerging treatment strategy to remove se-
nescent MSCs from aged donors.

Other treatments

Hypoxic preconditioning induced by 2, 4-dinitrophenol 
can improve the regeneration potential of aging bone 
marrow-derived MSCs into pancreatic β-cells [80]. Simi-
larly, hypoxic preconditioning can improve the in vivo 
angiogenic capacities of human adipose-derived MSCs 
from older donors [81]. Moreover, preconditioning the 
bone marrow-derived MSCs with repetitive electromag-
netic stimulation can enhance CFU-F and cell prolifera-
tion in bone marrow-derived MSCs, more effectively 
from the older donors than the young donors, via transient 
nitric oxide production and extracellular signal-regulated 
kinase 1/2 activation [82]. For gene modulation, SIRT3 
overexpression can protect human bone marrow-derived 
MSCs from older donors against oxidative damage by ac-

tivating catalase and manganese-dependent SOD through 
FOXO3a and improved their cell myocardial repair effect 
[83]. The improvement of myocardial repair by the aged 
MSCs can also be achieved by modulating the macro-
phage migration inhibitory factor that overexpressing 
macrophage migration inhibitory factor in human bone 
marrow-derived MSCs from older donors can reduce cel-
lular senescence, activate autophagy, induce angiogenesis, 
prevent cardiomyocyte apoptosis, and improve the heart 
function and cell survival after myocardial infarction [84]. 
In addition, treatment with L-carnitine has been demon-
strated to increase the gene expression of human telom-
erase reverse transcriptase and telomere length in human 
adipose tissue-derived MSCs isolated from healthy aged 
volunteers [85]. For the osteogenic differentiation, we 
have previously demonstrated that treatment of 5 μmol/L 
curcumin can enhance the osteogenic differentiation of hu-
man bone marrow-derived MSCs via matrix metallopro-
teinase-13 expression and activity [86]. Treatments with 
17β-estradiol and glycinol have also been demonstrated to 
rescue the age-related reduction in osteogenic differentia-
tion of bone marrow-derived MSCs isolated from older 
donors through estrogen receptor signaling [87], whereas 
treatment of 5-azacytidine induces  the proliferation and 
improves the osteogenic differentiation potential of adi-
pose-derived MSCs from older donors with DNA demeth-
ylation and increased TET2 and TET3 gene expression 
[88]. Furthermore, it has been reported that culture of the 
bone marrow-derived MSCs from aged human donors on 
a poly(ethylene glycol)-poly(ε-caprolactone) copolymer 
substrate can decrease levels of detected intracellular ROS 
levels in the aged MSCs and promoting the osteogenic 
differentiation [89].

R
E

V
IE

W

http://www.antpublisher.com/index.php/APT/index

Aging Pathobiology and Therapeutics 2022; 4(4): 109-118  114

Figure 2. Rejuvenation of the aged mesenchymal stem cells. Sorting of juvenile subpopulations among the aged mesenchymal stem cells (MSCs), 
senotherapeutics, hypoxic preconditioning, repetitive electromagnetic stimulation, sirtuin-3 (SIRT3) and macrophage migration inhibitory factor 
overexpression, treatment with L-carnitine, 17β-estradiol, glycinol, and 5-azacytidine, and culturing on the poly(ethylene glycol)-poly(ε-caprolactone) 
(PEG-PCL) copolymer substrate have been studied as the rejuvenation strategies on the aged MSCs.
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Challenges and prospects

Aging is a life-long process of living toward old age, 
which is characterized by the progressive loss of physi-
ological functions that could lead to diseases and death. 
The effect of aging on MSCs is complex and complicated, 
involving genetic martial deterioration, non-coding RNAs, 
exosomes, protein imbalance, mitochondrial dysfunction, 
reactive oxygen species as well as the mTOR, and insulin/
IGF-1-like signaling pathways [90]. However, as a life-
long process, MSCs are not just influenced by aging. In 
the real world, other environmental exposures and behav-
iors can also influence the properties of MSCs [91, 92]. 
The influences of these personalized factors also need to 
be considered in the analysis of the donor effect. Refine 
phenotyping and grouping with larger sample sizes could 
help to resolve the effects of specific factors on MSC 
properties. Single-cell and spatial transcriptomics could 
also help to delineate the specific aging cells among the 
heterogeneous subpopulations of MSCs [93]. 
The induced pluripotent (iPS) stem cells [94] is dem-
onstrated as an example of rejuvenation. There is still a 
lack of consensus on the standard/clinically recognized 
rejuvenation strategies for aged MSCs although numerous 
anti-aging strategies have been proposed [95]. Yet, MSCs 
possess diversified properties for different treatment ap-
proaches [9], and different rejuvenation approaches might 
be needed for different MSC properties. Further studies 
are needed to optimize the condition and quality of MSCs 
in the treatment regime for each MSC property. Despite 
the uncertainties regarding the application of aged MSCs, 
MSC therapy would still be a promising and important 
strategy for the treatment of different diseases. 
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Abstract
Senescence is seen as the cellular counterpart of tissue and biological aging, with irreversible stagnation of cell 
growth, and changes in function and behavior. Mesenchymal stem cells (MSCs) are one of the key therapeutic 
tools in regenerative medicine, and their regenerative and therapeutic potential declines significantly with the 
increasing age of cell donors and prolonged continuous culture in vitro. MicroRNAs (miRNAs) are regarded 
as important players in regulating the expression and function of multiple genes and pathways. Emerging 
evidence suggests that extracellular vesicles (EVs) participate in a complex cell senescence network, at least 
partially by providing certain miRNAs. Therefore, MSC EVs and miRNAs are implicated in not only contributing 
to but also influenced by MSC senescence. Here, we will provide an overview of the recent results on roles and 
mechanisms of miRNAs, particularly EV-miRNAs, involved in MSC senescence, and discuss their implications in 
functional properties and therapeutic efficacy of MSCs and their EVs.
Keywords: Extracellular vesicles, microRNAs, mesenchymal stem cells, senescence
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Introduction

Stem cells offer the foundation of regenerative medicine. 
Based on the plasticity of stem cells, in vitro and in vivo 
induction or gene modification methods can make them 
transdifferentiate into therapeutic cells to achieve thera-
peutic purposes. Mesenchymal stem cells (MSCs) are 
one of the most accepted therapeutic cells in regenera-
tive medicine and tissue engineering [1]. MSCs can be 
obtained from a rather wide range of adult tissues (e.g., 

muscles, bone marrow (BM), and adipose tissue) and 
neonatal tissues (e.g., umbilical cord (UC), placenta, and 
amnion), and amplified by in vitro expansion [2], easily 
reaching the manufacturing levels. MSCs have the poten-
tial for self-renewal and multi-lineage differentiation and 
exert pro-angiogenesis, pro-proliferation, anti-apoptotic, 
anti-fibrosis, and anti-inflammatory functions through 
the interaction between cells and the secretion of many 
soluble factors [3].
Cellular senescence refers to the irreversible stagnation of 
cell growth under the action of various stress factors and 
may be important to prevent the proliferation of damaged 
cells and acts as a barrier to tumor lesions [4]. However, 
cells that undergo permanent proliferation arrest may be 
detrimental to the entire individual, and senescent cells are 
present in aging tissues and accumulate in an age-depen-
dent manner that accelerates the decline of tissue function 
and contributes to the development of age-related diseases 
[5]. The regenerative and therapeutic potential of MSCs 
decreased significantly with the increasing age of the cell 
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donor. In cell-based therapy and tissue engineering, MSCs 
require prolonged and large-scale in vitro manufacture, in 
which continuous expansion may lead to replicative se-
nescence [1], likely constraining the manufacturing quan-
tity in return. Senescent MSCs usually show decreased 
regenerative ability, reduced differentiation ability, and 
weakened immune-regulatory functions, and thus possibly 
fail to achieve optimal therapeutic outcomes. In order to 
manufacture the highest quantity of MSCs with optimal 
functional properties, there is an urgency to develop tech-
nologies to easily assess and delay the replicative senes-
cence of MSCs.
MicroRNAs (miRNAs) are a class of special small RNAs 
composed of about 22 nucleotides that selectively bind 
to the 3’-untranslated region (3’-UTR) of the mRNA se-
quence and regulating the translation and stability of the 
targeted mRNA, thus altering gene expression without 
changing the genetic code [6, 7]. MiRNAs are important 
regulators of senescence-related gene expression. Most 
miRNAs that regulate stem cell senescence have been 
shown in MSCs and hematopoietic stem cells (HSCs) by 
targeting genes associated with metabolism, epigenetics, 
and DNA damage [8, 9]. Extracellular vesicles (EVs) are 
heterogeneous vesicles induced by stimuli such as cell dif-
ferentiation, activation, senescence, and transformation. 
They are formed by lipid bilayer membranes and contain 
proteins, nucleic acids, lipids, and their derivatives. EVs 
are an important participant in cell-to-cell communication 
and can precisely regulate receptor cell senescence and 
inflammation under various physiological and pathologi-
cal conditions [10, 11]. It has been reported that miRNAs 
released in the extracellular environment by cell-secreted 
EVs can influence the senescence of surrounding cells. 
In this review, we will focus on the latest advances in the 
regulatory role of miRNAs, especially those in EVs, in 
MSC senescence, and their application potentials.

MSC senescence

Although MSCs originate from the mesoderm, they can 
differentiate into mesodermal tissues (e.g., adipose, bone, 
cartilage, and hematopoietic tissues) and non-mesodermal 
tissues (e.g., neurons and glial cells) [12, 13]. Due to their 
self-renewal, multipotent differentiation, and immuno-
modulatory properties, MSCs are considered ideal candi-
dates to replace damaged or lost cells and tissues in vivo. 
Thus far, MSCs are widely used for regenerative medicine 
and tissue engineering and are currently the focus of over 
thousands of clinical trials, showing significant therapeu-
tic capacity in a broad range of diseases, such as pulmo-
nary fibrosis [14], myocardial infarction [15], and diabetes 
mellitus [16].
Senescence is a physiological process of organisms and 
is associated with a decline in MSC activity, which slows 
tissue repair and maintenance [17]. In vitro, prolifera-
tion arrest is the major characteristic of cell senescence. 
With the accumulation of undegraded macromolecules, 
senescent cells show morphological enlargement, flatten-

ing, and extensive vacuolization [18], accompanied by in-
creased senescence-associated β-galactosidase (SA-β-gal) 
activity, DNA damage, telomere shortening, and genomic 
instability.
In tissues or organisms, senescent cells can transmit sig-
nals to surrounding tissues through senescence-associated 
secretory phenotype (SASP), which consists of basic 
fibroblast growth factor (FGF), cytokines (interleukin-6 
(IL-6), IL-1β), chemokines (IL-8, and monocyte chemoat-
tractant protein-1 (MCP-1)), extracellular proteases (ma-
trix metalloproteinases (MMPs)), growth factors (trans-
forming growth factor-beta (TGF-β), hepatocyte growth 
factor (HGF)), and vascular endothelial growth factor 
(VEGF) [19]. SASP can in a way help eliminate senescent 
cells and/or tissue remodeling by promoting phagocytic 
immune cells and promote the occurrence and develop-
ment of tumors and age-related diseases by creating a pro-
inflammatory microenvironment.
The aging of adult resident MSCs is directly proportional 
to the old donor, and the functional properties of MSCs 
deteriorate severely with the increase of donor age. Com-
pared with MSCs from adult tissues, some MSCs from 
neonatal tissues have a stronger proliferative capacity in 
vitro, especially under hypoxic conditions [20]. The dif-
ferentiation efficacy of adult MSCs into certain lineage-
specific cells is also influenced by the donor age, while 
their ex vivo proliferative potential depends on population 
doubling (PD) and cell passage [21]. The senescence of 
MSCs influences their replicative potential and properties 
(e.g., morphology, function, and biomarker), which may 
affect their therapeutic efficacy. The functional degrada-
tion and potentially harmful effects of senescence have 
limited the application of MSCs in regenerative medicine 
and tissue engineering. Therefore, it is important to under-
stand the senescence features of MSCs and identify com-
mon methods for assessing the MSC state.
During the long-term culture of MSCs in vitro, their 
proliferative capacity and colony-forming units (CFU) 
decreased. The proliferation of MSCs slows down at 30-
40 PD, stops proliferation, and enters the senescence state 
when PD reaches a certain level [22]. The number of 
colonies indicates the clonogenic potential and prolifera-
tion ability, and the level of CFU decreased in senescent 
cells. The CFU of MSCs decreased continuously with the 
increase of passage and could hardly be detected after the 
20th passage [23]. Therefore, detecting PD and CFU in-
dicators of MSCs is a shared method for detecting senes-
cence in vitro.
The size and morphology of MSCs changed significantly 
during senescence. With long-term culture in vitro, the 
early MSCs, similar to spindle-forming fibroblasts form, 
became larger in size, flattened in shape, and increased in 
cytoplasmic granules [24]. The in vitro imaging system 
analysis showed that the cell volume of MSCs began to 
expand at the 5th passage, and the area of ​​the 9th passage 
cells increased by 4.8 times compared with the 1st pas-
sage [25]. The cell size was strongly associated with the 
increase of SA-β-gal expression and actin stress fibers [26]. 
Therefore, assessing the morphology and size of MSCs 
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is also a shared method for detecting senescence in vitro. 
Especially based on the unique morphology of senescent 
cells, the development of image recognition-related detec-
tion technology has excellent application prospects.
MSCs continuously lose their adipogenic and osteogenic 
differentiation potential during prolonged culture [27]. It 
has been reported that senescence can transform the os-
teogenic differentiation potential of MSCs into adipogenic 
[28]. Rapamycin, an autophagy activator, can restore the 
biological characteristics of senescent MSCs by increasing 
proliferation and osteogenic and decreasing adipogenic 
differentiation [29].
MSCs are involved in regulating the activation and phe-
notype of innate and adaptive immune cells, including 
dendritic cells, macrophages, monocytes, natural killer 
cells, and lymphocytes. When co-cultured with young 
mice MSCs, mice macrophages retained their original 
phagocytosis and M2 polarization and showed higher 
migration rates [30]. With senescence, the protective im-
munomodulatory functions of MSCs may be altered, such 
as their reduced ability to inhibit lymphocyte prolifera-
tion. With the increase of passages, the ability of MSCs 
co-cultured with peripheral blood mononuclear cells to 
inhibit the proliferation of CD4+ and CD8+ T cells were 
continuously weakened [31]. In addition to proliferation, 
senescent MSCs attenuated the inhibitory effects of phyto-
hemagglutinin-stimulated T-cell cytokine and activation-
antigen production [32].
The secretory properties of MSCs also change with se-
nescence. The expression of growth factors (TGF-β and 
HGF), inflammatory cytokines (IL-1, IL-6, and IL-8), 
and extracellular proteases (MMP1, MMP3, and MMP9) 
increased in SASP secreted by senescent MSCs [33]. 
SASP-related factors were increased in the conditioned 
medium of late passages compared with that of early pas-
sages. SASP-related factors drive the senescence of their 
own or neighboring cells in a cell-autonomous manner or 
paracrine manner, resulting in negative effects on cellular 
functions (such as cell adhesion, differentiation, prolifera-
tion, and migration) [34].
Specific molecules associated with MSCs--CD mark-
ers show different expression patterns at early and late 
stages. The expression of CD264 is up-regulated during 
the intermediate stage of cell senescence and continues 
to be up-regulated during cell senescence, which can be 
used to evaluate therapeutic potential. When the CD264+ 

proportion is 75%, the regenerative potential of MSCs is 
severely impaired [35]. On the other hand, the CD146+ 

proportion decreases with the increase in donor age and 
generation [36]. The expression of CD90+ and CD106+ 

is also decreased in senescent MSCs [26]. Leptin recep-
tor (CD295) can be used to mark apoptotic cells and its 
expression increased with MSCs of advancing biological 
aging [37].
Telomere shortening and DNA damage are the major 
mechanisms of senescence. Telomere length is closely 
related to the replicative potential of cells and tissues. 
Telomerase prevents telomere shortening and induces 
elongation by bringing repeated TTAGGG to chromo-

some ends [38]. However, telomerase almost does not 
express itself throughout the life cycle of MSCs. Due to 
the lack of telomerase activity, adult MSCs showed irre-
versibly shortened telomeres during continuous passages 
[39]. Oxidative stress is the major cause of DNA damage. 
Increased oxidative stress-related molecules can induce 
senescence and growth arrest in MSCs, which are highly 
sensitive to the accumulation of DNA damage [40]. El-
evated intracellular reactive oxygen species (ROS) levels 
can reduce MSCs proliferation and DNA synthesis [41]. 
The activity of the antioxidant enzyme (superoxide dis-
mutase (SOD)) decreased in late-generation MSCs, while 
the levels of nitrogen monoxide (NO), ROS, and gluco-
nate oxidizing enzyme increased [42]. 
Phosphatidylinositol 3-kinase (PI3K)/v-akt murine thy-
moma viral oncogene homolog (Akt)/mechanistic target 
of rapamycin (mTOR) pathways are activated by the 
high concentration of ROS and are key regulators of the 
oxidative stress response [43]. Nuclear factor erythro-
cyte 2-related factor 2 (NRF2) plays an important role 
as a transcription and regulator factor in oxidative stress 
response by regulating a variety of antioxidant response 
element-dependent antioxidant genes [44]. NRF2 activ-
ity decreased with the senescence of MSCs. Activation of 
NRF2 may be an effective method for preventing the de-
terioration of the MSC growth state under oxidative stress 
and maintaining stemness [45].
In addition, mitochondrial membrane potential changes 
in senescent cells, are accompanied by increased cellular 
oxygen consumption and ROS production [46]. Mito-
chondrial dysfunction has been shown to contribute to 
senescence. When mitochondrial function is impaired, 
oxidative stress increases, leading to apoptosis [47]. Mi-
tochondrial fusion increased and mitochondrial fission de-
creased in senescence MSCs. The efficiency and function 
of autophagy gradually decline with age, and enhanced 
autophagy may prolong the life span of organisms [48]. 
In vitro MSC senescence induced by the high glucose 
concentration showed increased autophagy levels, while 
down-regulation of autophagy alleviated the senescence, 
suggesting autophagy is involved in MSC senescence [49].

MiRNAs in MSC senescence

MiRNAs are important contributors to epigenetic regu-
lation, affecting the translation and stability of targeted 
mRNAs to regulate post-transcriptional gene expression 
[50]. Mounting evidence indicates that individual miR-
NAs participate in the regulation of target mRNAs and 
mediate numerous cellular processes by influencing differ-
ent signaling networks [51], including senescence-related 
multiple signaling molecules and pathways (Figure 1 and 
Table 1).
Specific miRNA function and expression profiles may re-
flect unique developmental stage-specific, tissue-specific, 
or disease-specific patterns. Several miRNAs are expressed 
differently between young and senescent MSCs (Figure 
2). The miScript miRNA assay was used to identify 43 
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Figure 1. MiRNAs are involved in MSC senescence. AIMP3, Aminoacyl-tRNA synthetase-interacting multifunctional protein 3; AMPK, AMP-
activated protein kinase; AP-1, activating protein 1; BMI1, B-cell-specific moloney murine leukemia virus insertion site 1; CDC25A, cell division 
cycle 25A; cEBPβ, CCAAT/enhancer binding protein β; CNOT6, CCR4-NOT transcription complex subunit 6; E2F2, early 2 factor 2; FOXO1, 
forkhead box O1; FZD4, frizzled-4; HDAC9, histone deacetylase 9; HMGA2, high mobility group A2; HMOX1, heme oxygenase-1; HOXB7, 
homeobox B7; KLF4, krüpple-like factor 4; LAMC1, laminin gamma 1; MAP3K3, mitogen-activated protein kinase kinase kinase 3; NAMPT, 
nicotinamide phosphoribosyl-transferase; RICTOR, RPTOR-independent companion of MTOR complex 2; SASP, senescence-associated secretory 
phenotype; SIRT1, sirtuin 1; SOD1, superoxide dismutase 1; TERT, telomerase reverse transcriptase; ZMPSTE24, zinc metallopeptidase STE24.

Table 1. MiRNAs are involved in MSC senescence.

miRNA miRNA Target Mechanism Reference
let-7 HMGA2 Regulate the p16INK4a/pRB pathway [55]
miR-10a KLF4 Reduce p21 expression [59]
miR-17 SMURF1 Regulate p53 pathway [61, 62]
miR-20a/93 p21 Regulate p53 pathway [56- 58]
miR-29 CNOT6 Activate the p16INK4a/pRB and p21/p53 pathways [63]
miR-31a E2F2 DNA damage and heterochromatin [64]
miR-34a NAMPT Regulate mitochondrial dysfunction and SIRT1/ FOXO3a activation [65- 67]
miR-141 BMI1, SDF1, SVCT2, DLX5, ZMPSTE24 Regulate differentiation, migration, proliferation, and cell cycle [68- 71]
miR-155 Cab39, cEBPβ Regulate AMPK pathway and ROS production [72, 73]
miR-188 RICTOR, MAP3K3, HDAC9 Regulates differentiation [74, 75]
miR-195 SIRT1, TERT,Akt/FOXO1 Shorten telomere length and ROS production [76]
miR-196a HOXB7 Repress proliferation [53]
miR-199b LAMC1 Regulate LAMC network [52]
miR-204 SIRT1 SASP expression [82, 83]
miR-335 AP1 Disrupts immunomodulatory properties and chondrogenic differentiation [84, 85]
miR-486 SIRT1 Repress cell proliferation and differentiation [86]

miR-495 BMI1 Increased p16, p21 and p53 expression,SA-β-gal activity, and suppress 
cell migration [87, 88]

miR-543/590 AIMP3 Affect differentiation potential [89, 90]
miR-1292 ALP, RUNX2, FZD4 Regulate Wnt/β-catenin pathway [91, 92]

miRNAs in senescent MSCs, of which 23 miRNAs were 
analyzed. Fourteen miRNAs (miR-10, miR-27b, miR-30b, 
miR-30d, miR-103a, miR-103a-2, miR-136, miR-140-
5p, miR-323-3p, miR-330-5p, miR-361-5p, miR-409-3p, 
miR-424, and miR-455-3p) were up-regulated in response 
to senescence, and five miRNAs (miR-16-2, miR-29b, 
miR-199b-5p, miR-454, and miR-618) were down-regu-
lated [52]. MiRNA expressed on MSCs from old donors 
(39-78 years) and young (3-13 years old) donors were also 

shown different, and 7 miRNAs (miR-99a, miR-100, miR-
196, miR-337-5p, miR-376b, miR-431, and miR-543) 
were particularly identified, with miR-196 rarely detected 
in the old-donors [53]. By analyzing the replicative se-
nescence-induced miRNAs expression changes of MSCs 
derived from young and old donors, twelve miRNAs were 
shown to be differentially expressed jointly in young and 
old donor MSCs. Among them, ten miRNAs (miR-150-
3p, miR-371a-5p, miR-762, miR-1207-5p, miR-1225-5p, 
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miR-1915-3p, miR-2861, miR-3665, miR-4281, and miR-
4327) were found to be up-regulated and two miRNAs 
(miR-25-3p and miR-93-5p) were down-regulated [54].
Functionally, overexpression or downregulation of par-
ticular miRNAs has been proven to mediate senescence 
by targeting candidate genes on the p16INK4a/pRB and p53/
p21 pathways, which primarily control cell senescence. 

osteogenesis [61]. The miR-17 family participates in se-
nescence regulation by directly targeting p21 [62].
The expression of miR-29 showed an increasing trend 
during the aging of human MSCs. MiR-29c-3p may regu-
late MSCs senescence depending on the p53 pathway. 
Overexpression of miR-29c-3p resulted in enhanced SA-
β-gal staining and SASP expression, delayed osteogenic 
differentiation, and reduced proliferation, whereas that of 
silencing had the opposite results. MiR-29c-3p was shown 
to target CCR4-NOT transcription complex subunit 6 
(CNOT6) and activated the p16INK4a /pRB and p53/p21 
pathways in MSCs [63]. 
The expression of miR-31a-5p was significantly elevated 
in old rat BMSCs, which exhibited increased adipogenesis 
and senescence phenotypes. MiR-31a-5p affects osteo-
blastic and osteoclastic differentiation and mediates the 
age-related bone marrow microenvironment. MiR-31a-5p 
induces DNA damage, cell senescence, and senescence-
associated heterochromatin foci by targeting E2F2, which 
is involved in senescence-related changes of heterochro-
matin [64].
The expression of miR-34a increased in senescent MSCs 
with continuous passage. MiR-34a promotes apoptosis by 
regulating mitochondrial dysfunction and activating sir-
tuin 1(SIRT1)/forkhead box O3a (FOXO3a) and intrinsic 
apoptosis pathways. In replicative and naturally senescent 
MSCs, inhibition of miR-34a contributes to the alleviation 
of senescence-related phenotypic features [65]. MiR-34a 
is up-regulated by p53 and then down-regulates SIRT1 
expression (a p53 inhibitor), thus forming a positive feed-
back loop [66]. Exception of p53/p21, overexpression of 
miR-34a reduces cycle-dependent kinases and cyclins. In 
addition, overexpression of miR-34a in young MSCs in-
duces long-term proliferation, increased SA-β-gal activity, 
and decreased osteogenic differentiation capacity. MiR-
34a significantly reduced SIRT1 activity, nicotinamide 
adenine dinucleotide (NAD)+ content, and NAD+/nico-
tinamide adenine dinucleotide (NADH) ratio by targeting 
nicotinamide phosphoribosyl-transferase (NAMPT) [67].
In MSCs, miR-141 target genes include B-cell-specific 
moloney murine leukemia virus insertion site 1 (BMI1), 
stromal cell-derived factor 1 (SDF1), sodium-dependent 
from vitamin C-2 (SVCT2), and distal-less homeobox 
5 (DLX5), which are involved in the regulation of dif-
ferentiation, migration, and proliferation. The expression 
of miR-141-3p depends on histone acetylation at the pro-
moter and increases in senescent MSCs [68, 69]. MiR-
141-3p directly inhibited zinc metallopeptidase STE24 
(ZMPSTE24) (enzyme for processing pre-lamin A into 
lamin A) [70]. In the subculture of aged MSCs, the cells 
have abnormal nuclear morphology due to the increase 
of pre-Lamin A. MiR-141-3p targeted cell division cycle 
25A (CDC25A) leads to inhibiting MSC proliferation by 
arresting cell cycle at the G1 phase  [71].
The expression of miR-155-5p in MSCs from old donors 
was significantly higher than that from young donors. 
In young donor-derived MSCs, high expression of miR-
155-5p resulted in increased cell senescence. MiR-155-5p 
increases mitochondrial fusion and inhibits mitochondrial 
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Histone deacetylase inhibitors induce senescence in 
MSCs. The up-regulation of miRNAs in the let-7 family 
can reduce high mobility group A2 (HMGA2) expres-
sion during cell senescence [55]. Decreased HMGA2 
leads to the activation of the p16INK4a gene, which in turn 
induces MSCs senescence [56] through the regulation of 
the p16INK4a/pRB pathway by let-7. In senescent MSCs, 
the expression of miR-20a and miR-93 (members of the 
miR-17 family) decreased [57]. The decreased expression 
of miR-20a was critical for the upregulation of p21, and 
overexpression of miR-20a significantly attenuated senes-
cence [58].
The expression of miR-10a in MSCs also affected by do-
nor age. MiR-10a attenuated cell senescence by inhibiting 
Krüpple-like factor 4 (KLF4) and increased the differ-
entiation capacity of aged BM-MSCs [59]. KLF4, a zinc 
finger transcription factor, is involved in the regulation of 
important processes such as cell cycle, cell growth, and 
apoptosis. Overexpression of KLF4 can induce cell senes-
cence, which is mainly caused by inducing p21 expression 
[60].
MiR-17 partially rescues the osteogenic differentiation 
of senescent MSCs in vitro and in vivo. Smad ubiquitin 
regulatory factor 1 (SMURF1), as a direct target gene, is 
an important contributor to the cascade of p53/miR-17 in 

Figure 2. Characteristics of miRNAs profile of young and senescent 
MSCs.
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fission in MSCs through the AMP-activated protein kinase 
(AMPK) pathway, thereby leading to cell senescence by 
inhibiting Cab39 expression [72]. In addition, miR-155-
5p promotes ROS production. MiR-155-5p suppressed 
the expression of antioxidant genes (heme oxygenase-1 
(HMOX1) and superoxide dismutase 1 (SOD1)) by re-
pressing CCAAT/enhancer binding protein β (cEBPβ, a 
common transcription factor regulating these genes) [73].
MiR-188 regulates the senescence-associated transition of 
BMSCs from osteogenesis to adipogenesis and has addi-
tional significance in senescence. The expression of miR-
188 increased in BMSCs of elderly mice and humans. In 
lineage-negative myeloid cells, overexpression of miR-
188 promotes senescence. MiR-188 targeted genes includ-
ing RPTOR-independent companion of MTOR complex 
2 (RICTOR), mitogen-activated protein kinase kinase 
kinase 3 (MAP3K3), and histone deacetylase 9 (HDAC9) 
[74, 75].
The expression of miR-195 increased in senescent and old 
donor MSCs, and the miRNA directly targeted SIRT1 and 
telomerase reverse transcriptase (TERT) [76]. SIRT1 is 
a regulator of p53 deacetylation and exerts an inhibitory 
role in aging [77]. TERT encodes telomerase, which pre-
vents telomere shortening [78]. MiR-195 affects telomere 
length changes by targeting TERT. Increased miR-195 
expression shortens telomere length in MSCs from old 
donors. Inhibition of miR-195 significantly reduced SA-
β-gal expression in senescent MSCs. MiR-195 also affects 
the phosphorylation of Akt and FOXO1 [76]. FOXO is 
a downstream target of the PI3K-Akt signaling pathway, 
which regulates the ROS pathway during cell senescence 
[79]. Among them, FOXO1 is a transcription factor in-
volved in the expression of antioxidant enzymes (SOD 
and catalase) and acts on SIRT1-mediated ROS increase 
and maintenance during senescence [80, 81].
Expression of miR-196a increased with senescence. Com-
pared with the children group, the expression level of 
miR-196a increased and Ki-67 decreased in adult MSCs. 
MiR-196a is negatively correlated with MSC proliferation 
by directly targeting homeobox B7 (HOXB7). Overex-
pression of HOXB7 can reduce senescence and improve 
cell growth, which is related to the increase of basic 
fibroblast growth factor secretion. HoxB7 acts in cell dif-
ferentiation, proliferation, and signal transduction, and is a 
major factor driving the behavioral longevity of progeni-
tor cells to optimize MSC performance [53].
Compared to young (average 21 years) and old (aver-
age 65 years) donor MSCs, miR-199b-5p is dysregulated 
in senescent MSCs. MiR-199b-5p directly represses the 
expression of laminin gamma 1 (LAMC1) to regulate the 
LAMC network, thereby indirectly affecting the senes-
cence of MSCs [52]. LAMC1 promotes tumor cell migra-
tion and proliferation through the Akt-NF-κB signaling 
pathway.
The expression of miR-204 is upregulated in senescent 
human umbilical vein endothelial cells (HUVECs) and 
stress-induced senescent chondrocytes [82, 83]. In mice, 
ectopic expression of miR-204 is sufficient to promote 

osteoarthritis development, while knockdown improved 
surgically-induced osteoarthritis and repressed SASP ex-
pression [83]. SIRT1 is considered to be a key regulator of 
inflammation and aging. miRNAs post-transcriptionally 
downregulated SIRT1 during the differentiation of mouse 
embryonic stem cells, and maintain low levels of SIRT1 
expression in differentiated tissues, where MiR-204 was 
found to be involved in inhibiting SIRT1 protein expres-
sion [82].
The expression of miR-335 was increased in BMSCs 
from old donors and senescent MSCs. Forced expression 
of miR-335 in MSCs induces a senescent phenotype and 
disrupts immunomodulatory properties and chondrogenic 
differentiation ability by repressing activating protein 1 
(AP-1), which regulates cell proliferation, differentiation, 
and migration [84, 85].
MiR-486-5p plays a role in senescence by targeting the 
SIRT1. In adipose-derived MSCs (AMSCs), miR-486-
5p is increased during aging and replicative senescence. 
Overexpression of miR-486-5p represses cell proliferation 
and adipogenic and osteogenic differentiation and induces 
senescence phenotype. MiR-486-5p directly regulates 
SIRT1 expression and deacetylase activity, and downregu-
lation of SIRT1 can induce senescence [86].
In MSCs, miR-495 increased p16INK4a, p21, and p53 ex-
pression and SA-β-gal activity by targeting BMI1 [87]. 
BMI1 is an inhibitor of cell senescence and a regulator of 
p16INK4a [88]. Conditioned medium collected from MSCs 
overexpressing miR-495 suppressed the cell migration, 
which is consistent with the paracrine effect of SASP to 
trigger cell senescence into healthy adjacent cells [87].
Aminoacyl-tRNA synthetase-interacting multifunctional 
protein 3 (AIMP3) affects the senescence and differentia-
tion potential of MSCs, and its protein expression level 
increases with senescence, while miR-543 and miR-590-
3p can significantly reduce the expression of AIMP3. 
Overexpression of miR-543 or miR-590-3p alleviated 
the late passage MSCs, whereas inhibition of miR-543 or 
miR-590-3p aggravated senescence by increasing AIMP3 
[89, 90].
MiR-1292 acts to accelerate senescence in adipose-de-
rived MSCs and is negatively correlated with osteogenic 
markers alkaline phosphatase (ALP) and runt-related tran-
scription factor 2 (RUNX2) in bone. MiR-1292 mediates 
its influence through the Wnt/β-catenin pathway by target-
ing frizzled-4 (FZD4) [91]. The Wnt/β-catenin signaling 
pathway is an important contributor to the self-renewal 
and differentiation of MSCs by promoting the intracellular 
production of ROS [92].

EV, EV-miRNA in MSC senescence

Based on their differences in size and secretion pathway, 
EVs are classified into three subtypes: exosomes, mi-
crovesicles, and apoptotic bodies [93]. Exosomes (less 
than 120 nm) originate from the endoplasmic reservoir, 
producing multivesicular bodies that fuse with the plasma 
membrane to secrete their contents. Microvesicles (100 
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to 500 nm) are budding vesicles that may arise from the 
plasma membrane under various conditions of stress. 
Apoptotic bodies (500 nm to 5 μm) are released from the 
plasma membrane of apoptotic cells [94]. 
EVs are composed of nucleic acids (mRNA, DNA, miR-
NAs, and long noncoding RNAs), lipids, and proteins 
[95]. The contents reflect the origin of the cell and convey 
specific molecules for specific cell types. EV-miRNA ex-
change between cells may be a key for intercellular com-
munication and the miRNAs encapsulated into EVs are 
strictly regulated by various microenvironmental condi-
tions and stress stimuli. The miRNA content of EVs may 
reflect the pathological state of released cells and serve as 
promising biomarkers for multiple pathologies. EVs are 
highly enriched for ALG-2 interacting protein X (ALIX), 
CD63, CD81, and tumor susceptibility gene 101 (TSG-
101). Various techniques have been used to characterize 
EVs, including atomic force microscopy, dynamic light 
scattering, enzyme-linked immunosorbent assay, elec-
trochemical biosensors, flow cytometry, fluorescence-
activated cell sorting, microfluidics, nanoparticle tracking 
analysis, resistance pulse sensing, scanning electron mi-
croscopy, and transmission electron microscopy [96, 97].
Senescence-related EVs can transfer regulatory factors 
such as miRNAs and proteins to promote the senescence 
process in autocrine, endocrine, and paracrine ways. Se-
nescent cells secrete high levels of EVs and regulate the 
microenvironment. P53 regulates the transcription of other 
endosomal genes associated with vesicle biosynthesis. 
DNA damage-induced senescence induces an increase in 
p53-dependent EV biogenesis. Senescent cell-derived EVs 
are partially dependent on p53 and its downstream target 
tumor suppressor-activated pathway 6 (TSAP6) [98].
Senescent cell-derived EVs enable neighboring cells to 
respond particularly rapidly and efficiently to stress by 
regulating the surrounding environment. On the hand, 
these EVs may play a role in promoting SASP by trans-
mitting pro-senescence signals, which facilitate the regen-
erative potential of surrounding cells and the elimination 
of senescent cells and also enhance local inflammation 
levels by recruiting immune cells and spreading senes-
cence throughout tissues. A recent study has just shown 
that senescence-associated exosomes influence the genetic 
information and immunomodulatory potential of the mi-
croenvironment [99].
At present, a variety of inflammation-related miRNAs 
have been identified in EVs, such as miR-19b, miR-20a, 
miR-21, miR-126, miR-146a, and miR-155 [100]. The ex-
pression pattern of different miRNAs in MSC-EVs chang-
es with senescence [101]. Compared with young rats, the 
expression levels of miRNA-294 and miRNA-872-3p 
in MSC-EVs decreased with age [102]. The expression 
of miRNA-146a was elevated in late passage MSC-EVs 
compared with the early passage [103]. Mouse senescent 
MSC-EVs contain miRNA-183-5p, which promotes se-
nescence in young MSCs [104].
Old bone marrow-derived EVs were absorbed by young 
MSCs and repressed osteogenic differentiation. Overex-
pression of miR-183-5p reduced Hmox1 protein level and 

cell proliferation and promoted senescence in MSCs [104]. 
MiR-34a increases with age in muscle-derived EVs and 
induces senescence of BMSCs. That is, EVs may induce 
MSC senescence through miR-34a-5p targeting SIRT1 
[105].
MiR-17-3p and miR-199b-5p were decreased in senes-
cent fibroblast-derived EVs. In particular, miR-199b-5p is 
decreased in senescent MSCs and elderly donor-derived 
MSCs [52]. MiR-17-3p is also decreased in senescent 
MSCs and skin fibroblasts as a cellular model. MiR-23a-
5p has been proven to regulate the osteogenic differentia-
tion of BMSCs, and its expression was increased in senes-
cent fibroblast-derived EVs [106]. MiR-23a-5p promotes 
osteogenic differentiation by targeting transmembrane 
protein 64 (TMEM64), whereas inhibition of miR-23a-5p 
expression promotes adipogenic differentiation in MSCs 
[107].
MSC-EVs containing let-7a, miR-21, miR-191, and miR-
222 are known to regulate cell proliferation and cycle pro-
gression [108]. The expression of miR-21 was decreased 
in EVs of senescent MSCs and adult MSCs, and this 
miRNA was also decreased in MSCs from ovariectomized 
mice and postmenopausal osteoporotic patients [109]. In 
breast cancer cells, this miR-21 targets E2F2, a down-
stream effector of p21 and p16INK4a [110].
MiR-31 is a circulating miRNA that is differentially ex-
pressed with senescence and increased in the blood of 
osteoporosis patients. The expression of miR-31 is also el-
evated in senescent endothelial cell MVs. These MVs re-
press the osteogenic differentiation of MSCs by targeting 
FZD3 [111]. MiR-31a-5p was found in senescent MSC-
derived exosomes, which trigged osteogenesis of co-
cultured bone marrow cells [112]. Compared with young 
mice, exosomes secreted from older mice-isolated muscle 
cells are enriched with miR-34a. MiR-34a is related to 
senescence and inflammation. Myoblast exosomes over-
expressing miR-34a can reduce MSCs proliferation and 
induce senescence by promoting SA-β-gal activity [105].
Induced pluripotent stem cell-derived MSC-EVs (iMSC-
EV) enriched with miR-105-5p could rejuvenate senescent 
nucleus pulposus cells by activating the SIRT6 pathway 
in vitro. miR-105-5p plays a pivotal role in the iMSC-EV-
mediated therapeutic effect by decreasing the level of the 
cAMP-specific hydrolase phosphodiesterase 4D (PDE4D) 
[113]. It has been reported that suppression of PDE4D ex-
pression can promote the migration, invasion, colony for-
mation, and proliferation of colorectal cancer cells [114].
MiR-146a-5p is increased in senescent MSC-derived EVs. 
This miRNA is known to regulate the NF-κB signaling 
activation and SASP production of senescent cells [103]. 
In a mouse model of allergic airway inflammation, MSC-
EV suppresses the function of group 2 innate lymphoid 
cells, reducing inflammatory infiltration and T helper 2 
cytokines production by transporting miR-146a-5p [115]. 
MSC-EV effectively represses the inflammatory response 
of cardiomyocytes by delivering miR-146a-5p to reduce 
v-myb myeloblastosis viral oncogene homolog-like 1 
(MYBL1) expression [116].
Exosomes enriched with miR-188-3p ameliorate senes-
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cence by regulating the mTOR complex. Incubation of 
old MSCs with this exosome decreased senescence mark-
ers and mTOR pathway proteins, and up-regulate the 
pluripotency markers. Inhibition of miR-188-3p in MSC-
EVs significantly increased the expression of RICTOR, 
decreased the expression and phosphorylation of Akt, and 
downregulated the proportion of SA-β-gal staining cells 
[117].
Interestingly, EVs from MSCs of young donors or early 
passages have been shown to reverse the senescent pheno-
types of late passages MSCs or that from pre-mature aged 
patients. In our study, we found that adding early pas-
sage iMSC-EV to the senescent iMSC culture promoted 
cell growth, downregulated the expression of age-related 
genes, reduced mitochondrial density, and improved mito-
chondrial membrane potential (Figure 3). This, even still 
at the preliminary stage, may suggest that the addition of 
exogenous exosomes, ideally engineered with elevated 
expression of specific miRNAs, to the MSC culture, may 

inflammatory, and wound healing, play a positive role in 
various diseases. In pilocarpine-induced status epilepticus 
mice treated with MSC-EVs, EVs reach the hippocampus 
within 6 h and exert anti-inflammatory and neuroprotec-
tive effects, which are coupled with normal hippocampal 
neurogenesis and cognitive and memory functions [119]. 
Melatonin-pretreated MSC-EVs affect the ratio of macro-
phage M2 polarization to M1 polarization by regulating 
the activation of phosphatase and tensin homolog (PTEN)/
Akt signaling pathway, thus suppressing inflammatory 
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be feasible for promoting MSC proliferation in culture or 
scaling-up the manufacture of MSCs to a significant ex-
tent.

Prospects of MSC-EV therapy

In initial studies in most animals, MSCs have shown 
encouraging positive results in various types of cell 
therapy, but the concerns of human MSC therapy remain 
unneglectable, including immune rejection and various 
cancer promotion. Due to the clinical outcomes of MSC-
based therapy remaining nonoptimal, so far, a large pro-
portion of the majority of registered clinical trials apply-
ing MSC therapy for human diseases have indeed fallen 
short of expectations.
Emerging evidence suggests that MSC-EV therapy has 
equal or better efficacy than MSCs in many diseases, and 
the risk of MSC-based therapy is significantly reduced. 

The advantages of cell-free therapies based on MSC-EVs 
are considerable. The incapability of MSC-EVs to self-
replicate greatly reduces the risk of expansion and tumor 
and increases safety. The small size also provides faster 
tissue penetration [118]. The potential to stimulate the im-
mune system is limited, reducing the risk during alloge-
neic transplantation. EVs are easier to handle in transpor-
tation and storage, which makes EV therapeutic potential 
optimal.
The effects of MSC-EVs, including anti-senescence, anti-

Figure 3. Effect of early passage iMSC-EV on senescence characteristics of late passage iMSCs.A. Changes in cell count of senescent iMSCs after 
early passage iMSC-EV incubation. B. Expression of cell cycle genes of senescent iMSCs. C. Mitochondrial density and mitochondrial membrane 
potential (MMP) of senescent iMSCs. n = 3, *** p < 0.001.
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response and promoting diabetic wound healing [120]. In 
the rat model of skin burn treated with human MSC-EVs, 
EVs accelerate the re-epithelialization of the wound, pro-
mote the nuclear transfer of β-catenin, and enhance skin 
cell migration and proliferation, thus facilitating wound 
healing [121].
Although preclinical data have demonstrated the scalabil-
ity of EV isolation methods and the safety of therapy, the 
clinical use of MSC-EVs is still limited. Currently, there 
is a lack of well-defined and standardized optimal culture 
conditions of parental cells and optimal protocols for 
EV isolation and storage, optimal therapeutic doses and 
dosing schedules, as well as reliable potency and safety 
profiles. Currently, studies have investigated the effective-
ness of MSC-EVs in the clinical setting, and most clinical 
trials are still recruiting and active (Table 2). The delivery 
routes oral, intranasal administration, intravenous and in-
traperitoneal injection.

R
E

V
IE

W

11  Liangge He, et al.

All Rights Reserved

The heterogeneity of MSC-EVs is probably one of the key 
factors affecting their therapeutic properties. EV variabil-
ity lies in the contents of RNA and proteins, particularly 
non-coding RNAs with properties such as inflammation 
resolution, potency, and tissue regeneration. The develop-
ment of technology for detecting EV contents is helpful 
to promote the study of maintaining EV characteristics. 
Currently, contents are analyzed using chemical, physical, 
biological, and nanotechnological methods, usually in-
volving the use of multiple antibodies, nucleic acid fitting, 
or molecular markers as recognition components, coupled 
with various chemical labels (e.g., redox probes and opti-
cal dyes), nanoparticle tags or DNA oligonucleotide [122]. 
For example, Raman spectroscopy is used to distinguish 
the overall chemical bond characteristics of EVs based on 
the spectral patterns generated by vibration and rotation. 
EV particles are captured on a specially modified plane or 
spherical interface and fluorescent dye labeling is added 

Table 2. List of clinical trials using MSC-EVs.

No. Condition or disease Treatment Trial Phase Trial ID

1 Cerebrovascular Disorders Allogenic MSC-EVs enriched by miR-124
Phase I
Phase II
(Recruiting)

NCT03384433

2 Metastatic Pancreas Cancer With 
KrasG12D Mutation MSC-EVs with KRAS G12D siRNA Phase I

(Recruiting) NCT03608631

3 Chronic Graft Versus Host Diseases Artificial tears for 14 days of UMSC-EVs 10ug/drop
Phase I
Phase II
(Recruiting)

NCT04213248

4 Alzheimer Disease Twice a week for 12 weeks nasal drip of MSC-EVs 
(5, 10, 20μg)

Phase I
Phase II
(Recruiting)

NCT04388982

5 Hospital-acquired pneumonia 7 times aerosol inhalation of MPC-EVs (8×108 or 16×108 
particles)

Phase I
Phase II
(Recruiting)

NCT04544215

6 Acute Respiratory Distress Syndrome Basic treatment and 7 times aerosol inhalation of MSC-EVs 
(2×108, 8×108, or 16×108 particles)

Phase I
Phase II
(Recruiting)

NCT04602104

7 Moderate SARS-CoV2 Infection Intravenous injection of MSC-EVs
Phase II
Phase III
(Recruiting)

NCT05216562

8 Degenerative Meniscal Injury Intra-articular administration of synovial fluid-derived 
MSC-EVs

Phase II
(Recruiting) NCT05261360

9 Perianal Fistula Placenta-MSC-EVs
Phase I
Phase II
(Recruiting)

NCT05402748

10 Retinitis Pigmentosa Subtenon injection of Wharton jelly-derived MSC-EVs
Phase II
Phase III
(Recruiting)

NCT05413148

11 Chronic Ulcer MSC conditioned media Phase I
(Completed) NCT04134676

12 Novel Coronavirus Pneumonia 5  t imes  aerosol  inha la t ion  of  MSC-EVs (2×10 8 
nanovesicles/3 ml)

Phase I
(Completed) NCT04276987

13 Healthy Once aerosol inhalation of MSC-EVs (2×108, 4×108, 8×108, 
12×108, or 16×108nanovesicles/3 ml)

Phase I
(Completed) NCT04313647

14 SARS-CoV-2 Associated Pneumonia Twice a day for 10 days inhalation of MSC-EVs (0.5-2×108 
nanovesicles/3 ml)

Phase I
Phase II
(Completed)

NCT04491240

15 COVID-19 Associated Acute  
Respiratory Distress Syndrome

Intravenous administration of 
BM-MSC-EVs

Phase II
(Completed) NCT04493242

Note: * Information obtained from https://clinicaltrials.gov/ on 30 November 2022.

https://clinicaltrials.gov/


to detect and quantify the membrane proteins and internal 
miRNAs [122-124]. The analysis and identification of 
specific contents can be achieved by using surface-sensi-
tive label-free physical analysis methods (e.g., electrical 
impedance spectroscopy, quartz crystal microbalance, and 
surface plasmon resonance) or external chemical tags to 
monitor the binding of EV contents to receptors on the 
array [125-127]. Although the diversity of EV detection 
methods has been achieved, the standardization of identi-
fication and analysis is still very important. The above de-
tection methods are more or less affected by the difference 
in the quality of reagents provided by different suppliers. 
The control of high-quality biologics and the evaluation 
of binding parameters helps to improve the reproducibility 
of detection.
Promoting or inhibiting expression levels of specific miR-
NAs in EVs can improve therapeutic efficiency for spe-
cific diseases or specific repair tissues. The culture condi-
tions and external stimuli of stem cells can alter their EV 
yield and content composition. While the EV components 
cannot be fully controlled in gene-manipulated cells, cur-
rently, breakthroughs have been made in the use of EVs 
as a carrier for the better delivery of specified molecules, 
including passive loading (e.g., incubation stimulation) or 
active loading (e.g., extrusion, electroporation, hypotonic 
dialysis, sonication, saponin permeabilization, and trans-
fection) [128]. The miRNA enrichment techniques can be 
achieved by constructing overexpressed cell lines or direct 
loading miRNAs into EVs by physical or chemical meth-
ods. Due to the complex EV loading mechanisms involv-
ing the endosomal sorting complex required for transport 
(ESCRT)/Rab protein family, multivesicular bodies, in-
tracellular tubules, and actin networks, the generated EVs 
loaded with specific miRNA molecules by transfection 
of parental stem cells are unreliable and unpredictable. 
In addition to cell transfection, direct delivery of desired 
miRNAs into EVs is an efficient and feasible method for 
enriching miRNAs, which can enhance the interaction of 
miRNAs with the surface of EVs by using calcium chlo-
ride (CaCl2) buffered medium and promote the incubation 
of selected miRNAs into EVs [129]. The heat shock meth-
od can alter the fluidity of EV membranes, and promote 
miRNA entry into EVs [130]. Electroporation is another 
technology to promote miRNA entry, but electroporation 
may trigger EV aggregation and change its morphological 
characteristics, thus affecting the effect. The existing limi-
tations still need to be improved.

Conclusions 

Cell senescence is a dynamic process evolving with time, 
and its specific regulation remains unknown. Analyzing 
the senescence properties of MSCs is very important for 
developing methods to assess MSC senescence, as well as 
for understanding how senescence affects the quality and 
efficacy of MSCs. A comprehensive analysis of miRNAs 
provides a more detailed and in-depth insight into how 
senescence influences MSCs. Advances in understanding 

the role of miRNAs in aging may provide new ways to al-
leviate MSC senescence. Undoubtedly, continued in-depth 
studies of miRNAs within MSC senescence will shed 
light on their mechanisms of action during senescence and 
may reveal clues for the potential roles in the extracellular 
environment.
Senescence may influence the production rate and cargo 
type of MSCs and their EVs. Systematic analysis and 
comparison of miRNAs related to MSC senescence and 
those contained in MSC-EVs will help to discover uni-
versal senescence markers to identify senescent cells. 
Translating preclinical results into the clinic faces differ-
ent challenges related to EV dynamics and biology. Effec-
tive MSC-EV therapy may depend on the physiological 
function and state of the parental cells, as senescent may 
deprive cells of reverse/reduce disease efficacy. A correct 
understanding of the detailed mechanisms involved in 
miRNAs and EV-miRNAs during senescence may con-
tribute to the regulation of MSC efficacy, as well as the 
development of MSC-EVs to improve tissue regeneration 
and aging-related diseases.
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