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Abstract
As artificial intelligence (AI) plays an ever-increasing role in medicine, various designs that implement 
machine learning (ML) are being introduced in an effort to develop surgical robots that perform a variety of 
surgical techniques without human interference. However, current attempts in creating autonomous surgical 
robots (ASRs) are hindered by the amount of time needed to train a robot on a physical sett, the incredible 
amount of physical and/or synthetic (artificial) data needed to be collected and labeled, as well as the 
unaccountable and unpredictable characteristics of reality. Progress outside of the medical field is being made 
to address the general limitations in autonomous robotics. 
Herein, we present a review of the basics of machine learning before going through the current attempts in 
creating ASRs and the limitations of current technologies. Finally, we present suggested solutions for these 
limitations, mainly data driven physics simulations and domain randomization, in an attempt to create a 
virtual training environment as faithful to and as random as the real world that could be transferred to a 
physical setting. The solutions suggested here are based on techniques incorporated and strides being made 
outside of the medical field that could usher in the next generation of autonomous surgical robotics designs.
Keywords: Autonomous surgical robots; robotic surgery; artificial intelligence; machine learning; physics 
simulation; domain randomization.
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errors, an increased workload, coupled with a reduced 
workforce and an aging population, are incentivizing 
experts to acquaint themselves with computerized 
assistants or to introduce certain automated surgical 
interventions [1–3]. One such technology is artificial in-
telligence (AI), specifically machine learning (ML). This 
article reviews the current role of ML techniques in 
surgery with a focus on autonomous robotics surgery 
(ARS). Also, we provide a perspective on future possi-
bilities that could help in enhancing the effectiveness of 
autonomous surgical robots (ASRs), mainly data driven 
physics simulation and domain randomization. The use 
of ML in electronic medical record systems, diagnostics 
and medical imaging is out of the scope of this review. 
Searches were performed on Google scholar, Medline, 

INTRODUCTION

Technological advancements in hardware and software 
increasingly play an imperative role in the evolution of 
contemporary medical/surgical techniques and para-
digms. This, in addition to the high liability of medical 
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PubMed, Scopus, Cochrane library and IEEE using var-
ious combinations of keywords: Autonomous surgical 
robots, surgical and medical robotics, artificial intelli-
gence, machine learning, physics simulation and domain 
randomization.
As AI systems are being continuously adopted in med-
icine, there has been increasing interest in “autono-
mous” surgical robots that can assist surgeons or even 
perform portions of an intervention independent of hu-
man guidance or control [3,4]. An autonomous intelligent 
robot can be achieved using different variations of AI. 
ML is a subset of AI and an increasingly growing field. 
It is popular as it permits efficient processing of large 
quantities of data for analysis, interpretation and deci-
sion making while providing computers with the abili-
ty to learn and perform a range of tasks without being 
explicitly programmed to do so. Already widely used in 
electronic medical record systems, medical imaging and 
diagnostics, it is expected that ML will play a pivotal role 
in surgical and interventional procedures [1,3,5].
ML agents can acquire surgical skills in a variety of ways, 
one of which is, for example, through demonstration by 
human experts [3]. Currently, intelligent surgical robots 
with varying degrees of autonomy are proving to be 
comparable to surgeons at some tasks, such as suturing, 
locating wounds and tumor removal. These intelligent 
surgical assistants could surpass the current state of the 
art commercial surgical robots and promise good results 
and a wider access to specialized procedures [1,3,5]. 
As promising as this might seem, debilitating limitations 
currently hinder substantial progress in medical appli-
cation of AI generally, and ASRs specifically. Mostly, these 
limitations are linked to the current available AI technol-
ogies and partially to some unique characteristic of AI 
application in medicine. The main limitations include: 
The need for high-quality medical/surgical data which 
slows the process of developing effective agents while 
requiring large scale collaborative efforts- a modeling 
challenge that hinders our ability to accurately “model” 
a surgical environment that replicates the dynamic and 
deforming nature of the living body- and the inability of 
intelligent agents in general and surgical robots specifi-
cally to adapt to unknown or yet unobserved situations 
[3]. 
Interestingly, new technological advancements in AI 
software designs are being currently developed that, 
we think, could help us overcome the aforementioned 
limitations. Two particular new AI advancements that 
could be of use are data driven physics simulation en-
vironments and domain randomization. First, we will 
go through a general overview on ML parameters im-
plemented in current autonomous surgical robots while 
exploring some examples of present automated surgical 
robotic technologies, we will then discuss some of the 
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limitations of the current technologies and go through 
our proposed solutions to overcome current designs 
drawbacks.

DESIGN
A robot is a system that has three main components: a 
set of sensors that detect the robot’s environment, actu-
ators (or end effectors) that interact with and within the 
environment and a control architecture that processes 
sensory data and generates actions [3](Figure 1). ML is 
mainly involved in the control architecture, enabling the 
robot to “understand” the sensory input and generate a 
proper action. In order to do so, the agent must learn to 
generate a certain action in the context of a set of sensory 
inputs and desired goals. So, how can a robot learn a sur-
gical skill? First, it could learn from human demonstration 
by observing experiments conducted by trained experts. 
The robot could also learn from its own interaction with 
the environment, by evaluating the appropriateness of its 
own actions to reach certain target states or goals [3,6]. In 
order to understand current autonomous robotic surgery 
technologies and future perspectives, a general knowl-
edge of the main subsets of machine learning is needed. 
The three main categories of machine learning are super-
vised learning (SL), unsupervised learning (UL) and re-
inforcement learning (RL) [7]. Many agents use variations 
and combinations of these three categories.
In SL, training data are considered “labeled “, ie, the data 
consist of a set of known input vectors along with a set of 
known matching target vectors. The software creates a 
function that links the input object with the correspond-
ing output [8]. For example, consider we have a set of 
photos of thousands of lung pathologies (pneumothorax, 
pneumonia etcetera). The data is considered labeled if 
each photo identifies certain features of the radiograph 
such as opacification values (input vectors) and each 
type of pathologies (target vector).  Eventually, SL seeks 
to build a predictor model that predicts target vectors for 
new input vectors. Learning consists of finding optimal 
parameter values for the predictor model [3]. 
In UL, the training data is considered unlabeled and con-
sists of a set of input vectors without their corresponding 
target vectors. UL aims to discover correlations and struc-
ture in the data. Whether using UL or SL, Gaussian Mixture 
Model (GMM) and Gaussian Mixture Regression (GMR) 
based learning could be added to fine tune the learning 
process and get more reliable demonstration [3,9].  
Reinforcement learning (RL) is concerned with how intel-
ligent agents ought to take actions in an environment in 
order to maximize cumulative reward. The difference be-
tween RL and SL is that RL does not need labelled input/
output data pairs, the training data is mostly generated 
through direct interaction with the environment, and RL 
does not need explicit correction of sub-optimal actions. 
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RL focuses on exploring the environment (states) in a trial 
and error approach in order to create and adjust a policy 
that permits the agent to perform a certain task (action). 
RL’s end goal is to learn a policy that represents a mapping 
from states to actions. For example, suppose that we want 
to train a robot to tie a knot. The agent will explore the 
environment, gradually develop a certain policy (creating 
and adjusting a suturing technique) in order to be even-
tually capable of performing the task of tying the knot. A 
value of a state-action pair is created and represents how 
good it is for the robot to perform an action in a given 
condition or state [3,7]. 
RL can be accelerated using implicit imitation learning 
(IML), a technique that allows the agent to learn a skill 
through the observation of an expert mentor [10]. For ex-
ample, IML can be used to teach an agent a surgical skill 
by observing and imitating the performance of an actual 
surgeon. The agent observes and analyzes the state tran-
sitions of the surgeon’s actions (for example, how the sur-
geon moves from one position to another, and the com-
position of every maneuver) and uses the information to 
update its own states and actions. In a series of works, 
trajectories recorded from human subjects are used to 
generate an initial policy (the action generated based on 
certain state). Additionally, some algorithms for imitation 
learning can learn from several mentors and are being 

used to transfer knowledge between agents with different 
reward structures [3,10]. 
Inverse RL (IRL) is a technique for imitation learning that 
also consists of an observer agent and a mentor. In IRL 
the agent learns the reward function of the environment 
from the observer. Then the agent builds the policy that 
maximizes the reward function using classical RL’s trial 
and error approach [3]. 
Another layer of ML is deep learning (DL). DL allows for 
processing of huge chunks of data to find relationships in 
sets that are often impossible to explicitly label, such as the 
pixel in a given set of pictures. The basic architecture of DL 
consists of what are called neural networks, that are anal-
ogous to the neurons and synapses of the human brain, 
providing much of the ability to learn. Deep learning can 
be used in combination with the previously mentioned 
techniques [11].   
Other aspects of ML deals with fine tuning the agent to 
account for the unpredictability of, or to accurately rep-
resent physical systems. These techniques include system 
identification, high-quality rendering [12–14], domain adap-
tation [15] and iterative learning control [16]. Although these 
methods have some advantages, they generally require 
large amounts of data and are still labile to unexpected 
changes and unaccountable environmental elements [17].
It is important to note that ML is generally used with 

Figure 1. A general learning agent consists of sensors, effectors and a control architecture. The control architecture has a 
“learning element” that uses feedback from the “critic” on the quality of tasks execution and determines how the performance 
should be modified. The control architecture also has a problem generator that suggests actions that could lead to new and 
informative experiences. 
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other methods in order to optimize robotic capabilities. 
Even though the control architecture (where ML is most-
ly needed) governs the action performed based on the 
current state of the environments, two important com-
ponents cannot be overlooked; the sensors needed for 
environment observation and the effectors to perform a 
certain task. Indeed, surgical interventions include inter-
actions with delicate and deformable structures. So, in 
order to operate, sensory and motor apparatus are be-
ing used to detect, for example, the depth needed for a 
given maneuver, tissue consistency and to generate the 
required force and direction of a specific maneuver [3,4]. 
For example, Sozzi et al. used real-time adaptive motion 
planner (RAMP) to generate collision-free robot motions 
to avoid obstacles within the workspace [18]. For the Smart 
Tissue Anastomosis Robot (STAR), in order to achieve 
proper suturing, the team used force sensors and infrared 
bio-glue to prevent tissue deformation and to guide the 
robot for needle insertion [19]. 
Next, we will be dealing with current examples of autono-
mous surgical robots that have incorporated one or more 
of the methods presented. 

WHAT ROBOTS DO WE HAVE SO FAR? 

Van den Berg et al. employed imitation learning to develop 
an agent that learns tasks from multiple human demon-
strations, optimizing speed and smoothness of task exe-
cution. The technique was employed on the Berkeley Sur-
gical Robot and used for knot-tying and drawing figures 
[16]. Schulman et al. also developed an agent that learns by 
human demonstration using a trajectory transfer method. 
The agent was able to learn five different types of knots 
[20]. Recently, Calinon et al. used inverse RL to transfer 
skill from a surgeon teleoperator to a flexible robot. In 
this method the agent and the mentor may have different 
morphological structures and still handle the case of skill 
transfer [21].
Moreover, Mayer et al. apply ML for suturing and knot-ty-
ing, using recurrent neural networks (a subset of deep 
learning), publishing a series of work [22,23]. Also, they used 
imitation learning to create a suturing robot using princi-
ples known from fluid dynamics [24].
Weede et al. developed an intelligent autonomous en-
doscopic guidance system that anticipates the surgeon’s 
next action during a procedure and adjusts the position 
of the endoscopic camera accordingly. The system uses 
information on the movements of the instruments from 
previous procedures [25].
Krieger el al. used The STAR robot to suture bowels in pigs. 
They used the concept of supervised autonomous sutur-
ing, where the surgeon outlines the incision area then the 
robot uses sensors and combined 3D imaging to assist in 
suturing of intestinal anastomosis. The STAR robot was 

able to place evenly spaced and leak-proof sutures in a 
trial with live pigs. However, sometimes the surgeons had 
to make small adjustments to the thread’s position for ac-
curate suturing [19]. Moreover, Krieger has taught the robot 
to remove tumors with infrared markers that were used to 
mark cancerous areas, the robot then excises these parts 
with, though preliminary, human level accuracy [5]. 
Mylonas et al. used GMM in designing an algorithm that 
learns from human demonstration. They created a basic 
autonomous eFast ultrasound scanning by a robotic ma-
nipulator [26]. Kassahun et al. used GMM modeled joint 
probability densities to make their agent capable of un-
derstanding the model of interaction between the aorta 
and the catheter in interventional procedures [27]. 
Another agent used in interventional procedures devel-
oped by Fagogenis et al. used what they called “Haptic 
vision” to assist in paravalvular leak closure of prosthetic 
valves. They designed a robotic catheter that can navi-
gate autonomously (using leak locations localized from 
pre-operative imaging) to the aortic valve and deploy an 
occluder into the site of a leak. An operator then deploys 
the occluder. Haptic vision combines machine learning 
with intracardiac endoscopy and image processing algo-
rithms to form a hybrid imaging and touch sensor. Ma-
chine learning was primarily used to enable the catheter 
to distinguish the blood and tissue from the prosthetic 
aortic valve [28].
Last but not least, AI agents are being introduced in Uro-
logical procedures. The AquaBeam™ robotic system was 
approved as a water ablative therapy for the resection 
of the prostate. Although the technology requires human 
impute and image planning, the robotic system assists 
in resecting, surgeon defined, prostatic tissue using high 
velocity saline jet while autonomously adjusting various 
flow rates based on the depth, length and width of the 
area being resected [29].

LIMITATIONS AND HOW TO OVERCOME 
THEM

All current ML technologies used in ARS, variably share 
some common drawbacks, mainly, the highly unpredict-
able nature of the physical world, restraints regarding 
the training environment, and the amount of data and 
time needed to train an optimal machine. Training and 
testing an intelligent agent using available models tends 
to be time-consuming which generally involves manually 
collecting and labelling huge amounts of data, for exam-
ple when using supervised learning. This is problematic 
when the job requires data that are difficult to obtain in 
large quantities with necessary variability, labels that 
are difficult to specify, and/or expert knowledge [30]. The 
end goal of overcoming these limitations is, broadly, to 
create a system that can implement the desired actions 
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(suturing for example) with great reliability, flexibility 
and safety [4]. The question is whether it is possible to 
create the optimal environment for ML to overcome the 
physical constraints of the real world (including the data 
availability issue), and increase the speed of skill acqui-
sition while being adaptable to random changes and the 
complex nature of the physical reality. We will be focus-
ing on modeling challenges, data limitation and adapta-
tion to physical changes. The solutions suggested here 
are based on developments outside the medical field, as 
we suggest the need to incorporate these techniques in 
future autonomous surgical robotics designs.  

Modeling challenges and physical data limitations

One of the major challenges in modeling the surgical 
environment is the deforming and dynamic nature of 
the living body due to physiological, pathological and 
even external phenomena. For that purpose, mechani-
cal, geometric, and physiological behavior of the envi-
ronment should be considered. The current methods 
that rely on intraoperative inputs are not optimal as 
they involve theoretical and technical challenges relat-
ed to the interpretation of sensory information, such as 
sensor co-registration, synchronization and informa-
tion fusion, which are highly fragile as well as the need 
for annotated real world data [3]. Moreover, applying ML 
sometimes employs random exploration, which can be 
hazardous in any real physical training set. ML might 
also often require thousands or millions of samples, 
which could take a tremendous amount of time to col-
lect in a real physical word setting, making it impractical 
for many applications [31]. One way of overcoming this 
limitation is through learning in simulation. 

Data driven physics simulation 

Recent results in learning in simulation are promising 
for building robots with human-level performance on a 
number of complex tasks [32,33]. Ideally, an agent should 
learn policies that encode complex behaviors utterly 
in simulation and apply those policies successfully via 
physical robots. 
Moreover, one can speculate that an optimal simulation 
should be as faithful as possible to the real world. Here 
comes the role of physics simulators. High quality phys-
ics simulations are being used in computer graphics to 
replicate the physical world, from dynamic fracture ani-
mation to fluids and particles simulations [34,35]. Although 
they do not provide an interactive environment for real 
time simulation, they could be used as a cornerstone 
to replicate physical reality. On the other hand, there 
are other methods that allow for real time interactions 
within the virtual world. For example, Holden et al. de-
veloped a data-driven physics simulation method that 
supports real time interactions with external objects. 

Their method combines ML with subspace simulation 
techniques which enables a very efficient physics simu-
lation that supports accurate interactions with external 
objects, surpassing existing models [36]. Seunghwan et 
al. created a physics-based simulation of a human mus-
culoskeletal model composed of a skeletal system and 
300 muscles with a control system, creating a reliable 
simulation of anatomical features with robust control of 
dynamical systems that generates highly realistic human 
movements. Also, their model demonstrates how move-
ments are affected in specific pathological conditions 
such as bone deformities and when applying various 
prostheses [37]. The same authors also formulated a tech-
nique called VIPER that creates realistic muscle models 
that simulate controllable muscle movement and even 
muscle growth [38]. Moreover, one can use MuJoCo physics 
engine which is commonly used to create advanced vir-
tual environments for ML. MuJoCo was used by OpenAI 
research to virtually train a robotic hand that can solve 
a RubiK’s cube [39]. It is only a matter of time before we 
reach ultra-realistic real time physics simulators that 
include complex anatomical and physiological elements. 
So how do these approaches attempt to replicate reali-
ty? The aforementioned models and other approaches 
sometimes make the simulator to closely match physical 
reality by performing a variety of techniques including 
system identification, high-quality rendering [12–14], do-
main adaptation [15] and iterative learning control [16]. Al-
though they are the best methods to account for known 
physical entities and generally do not directly rely on   
physical data, the problem in these techniques is that 
they are still suboptimal in accounting for the random-
ness of the real world, requires large sets of synthetic 
data impute (both data demanding and time consuming) 
and many times still requires additional training on re-
al-world data [17].
So, we have techniques to simulate the real world that 
can be trained fast and does not require real physical 
data input, now the question is how can we ensure that 
our model can deal with uncounted randomness, can be 
trained fast, and does not require large synthetic data 
input?

Adaptation to unknown situations and overcoming 
synthetic data limitation

Any system with decision-making power in the oper-
ating room should guarantee the safety of the patient 
while being able to cope with unpredictable events and 
the uncertainty of the living body. A critical challenge is 
to develop intelligent agents that are able to adapt the 
learned skills to unexpected and novel situations [3]. For 
solving the modelling problem, we suggested the use of 
virtual physics simulation. Unfortunately, incongruities 
between reality and simulators make transferring skills 
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from simulation problematic. For example, system iden-
tification, a process used for adjusting the parameters 
of the simulation to match the characteristics of the 
real world and the behavior of the physical system (i.e 
robot), is error-prone and time-consuming. Even with 
other techniques such as high-quality rendering [12–14], 
domain adaptation [15] and iterative learning control [16], 
the real world has physical effects that are hard to model 
and are not captured by current real-time physics sim-
ulators like gear backlash, nonrigidity, fluid dynamics 
and wear-and-tear. Furthermore, simulators are often 
unable to produce the noise and richness embedded in 
the real physical world. These differences, known as the 
reality gap, are considered bottleneck to the usage of 
simulated data on real physical robots [17,39].
Bridging the ‘reality gap’ that separates experiments 
on hardware from simulated robotics might accelerate 
autonomous robotic developments through improved 
synthetic data availability. This brings us to domain 
randomization (DR), a new method for training agents 
on simulated environments that transfer to the real en-
vironment by randomizing rendering in the simulator. 
In other words, the parameters of the simulation are 
randomized in a way that with enough variability in the 
simulator, the real world appears to the agent as just 
another variation. So, the underlying hypothesis is this: if 
the variability in simulation is significant enough, agents 
trained in simulation will generalize to the real world. 
It is important to note that researchers can also try to 
use DR in combination with other techniques that opti-
mize the physics simulation, which might improve the 
results [17,39]. 

Domain randomization 

In DR, the parameters of the simulator—like lighting, 
pose, object textures, and other physical aspects—are 
randomized to oblige the agent to learn the essential 
features of the object and task of interest. DR requires 
us to specify what aspects we want to randomize, and 
specify the variable testing states. Although in its early 
form, the importance of DR is that it allows for the pos-
sibility to produce an agent with strong performance 
using low-fidelity synthetic data. This introduces the 
possibility of using inexpensive artificial (synthetic) 
data for training agents while avoiding the need to col-
lect and label incredible amounts of real-world data or to 
generate highly realistic artificial worlds [30]. One of the 
earliest works on domain randomization was presented 
by Tobin el al. The team used DR in the setting of RL and 
managed to train a robot virtually to localize presented 
objects. They were able to train an accurate real-world 
object detector that is resistant to partial occlusions and 
other distractors using synthetic data from a simulator 
with non-realistic random textures. The detectors were 

also used to perform grasping in a messed up real envi-
ronment [17]. Also, OpenAI used RL with DR to enable a 
robot to learn dexterous in-hand manipulations [40].
Automatic domain randomization (ADR), is a variation 
of DR that randomizes the parameters of the simulator 
automatically, without the need to specify what elements 
of the simulation we want to change. ADR automatically 
generates a distribution over randomized environments 
of ever-increasing difficulty, thus creating millions for 
scenarios for the learning algorithm. The latest imple-
mentation of ADR was conducted by the OpenAI team, 
who trained a robotic arm to solve a rubik’s cube. The 
robot was able to solve the cube in a real world setting, 
even with intentional disturbance of the environment 
by the researchers [39]. 
Compared to iterative learning control and domain ad-
aptation which are important tools for addressing the 
reality gap, DR does not require additional training on 
real-world data. Although DR requires no additional real 
world training, it can also be combined easily with most 
parallel techniques, and we should consider using it in 
combination with realistic physics simulations and pos-
sibly even, when possible, other training methods such 
as imitation learning [17]. DR (or ADR), through randomi-
zation, reduces the need of synthetic data while creating 
an agent robust to changes in the real world. It is im-
portant to note that DR is still a new technique and will 
require further optimization to improve its usefulness 
and applicability.  
In brief, what we are suggesting in this review is to try 
to combine optimal realistic physical simulation tech-
niques with DR (or ADR) and other parallel techniques 
in a sense that we can create an environment as faithful 
to the real world, and as random as the real world in 
order to produce optimal training environment for sur-
gical agents thus creating the most reliable autonomous 
surgical robots.

CONCLUSION
Autonomous robots will be needed to address the de-
creased work force, the increased demand for surgery 
and the high risk of medical errors. Current technologies 
used in medical robotics require huge amounts of data 
input, are difficult to train, and prone to minor changes in 
the environment. Using physics simulation techniques 
combined with DR might be what is needed to over-
come these limitations in order to create the advances 
desirable in autonomous robotic surgery. Our approach 
focuses on virtual training with domain randomization. 
Of course, to apply the learned skills in the real world 
certain specific hardware will be needed, however these 
technologies are currently available in the form of sen-
sors and other hardware already in use in many current 
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medical and non-medical models. Here we are adding 
this layer of training that if linked properly to a phys-
ical hardware, the aforementioned limitations should 
be eventually overcome. In essence, more trial and less 
error.
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