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Abstract
Background: Lewy body dementia (LBD) is a complex neurodegenerative disorder characterized by the pres-
ence of Lewy bodies in the brain, leading to cognitive decline and motor symptoms. The exploration of poten-
tial therapeutic mechanisms is crucial for developing effective treatments. Coptidis Rhizoma (CR) has been 
traditionally used in herbal medicine, and its compounds may offer novel therapeutic avenues for LBD.   
Materials and Methods: In this study, an integrative bioinformatics approach was employed to investigate 
the molecular interactions between CR compounds and LBD-associated targets. The authors collected relevant 
targets from the OMIM and NCBI databases and utilized bioinformatics tools for protein-protein interaction 
(PPI) network analysis, gene ontology, and KEGG pathway enrichment. Molecular docking simulations were 
conducted using PyRx software to evaluate binding interactions between CR compounds and key proteins as-
sociated with LBD. 
Results: The analysis revealed 20 critical hub genes, including MAPT, GBA, SNCA, TARDBP, and PRKN, which 
play significant roles in neurodegeneration. Key processes involved in LBD, such as neuronal apoptosis regu-
lation, oxidative stress response, and synaptic transmission, were identified. The molecular docking results 
indicated compelling interactions, with Obacunone exhibiting a binding energy of -9.4 kcal/mol for GBA and 
-9.2 kcal/mol for PRKN, suggesting its strong affinity for these targets. Similarly, Coptisine demonstrated high 
binding potential with GBA (-9.4 kcal/mol), while Worenine showed notable interaction with SNCA (-7.4 kcal/
mol), reinforcing their therapeutic relevance. 
Conclusion: This computational study provides valuable insights into the therapeutic mechanisms of CR com-
pounds for LBD. The findings underscore the importance of experimental validation to confirm the predicted 
interactions and therapeutic potential, paving the way for future in vitro and in vivo investigations to address 
this challenging neurodegenerative disorder.
Keywords: Lewy body dementia (LBD), Coptidis Rhizoma (CR), neurodegenerative disorder, network pharma-
cology, molecular docking
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Introduction

Lewy body dementia (LBD) is a complex and devastating 
neurodegenerative disorder characterized by progressive 

cognitive decline, motor dysfunction, and significant neu-
rological impairments [1-3]. However, given its severe ef-
fects on patient quality of life and sustained burden on the 
healthcare system, current treatment options are limited, 
highlighting a desperate need for further research initia-
tives that can help to elucidate the fundamental molecular 
drivers of the disease [4, 5].
Lewy body dementia (LBD) is defined by the abnormal 
deposition of alpha-synuclein protein aggregates in neu-
ronal cells, called Lewy bodies [6]. These pathological 
inclusions interfere with essential cellular processes, 
resulting in neuronal impairment and gradual neurode-
generation [7]. The complex interplay among genetic, 
environmental, and molecular factors contributes to the 
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heterogeneous etiology of the disease and hinders the de-
velopment of classical therapeutic strategies [8, 9].
Traditional Chinese Medicine (TCM) presents a promis-
ing approach for discovering new therapeutic compounds 
with potential neuroprotective effects [10, 11]. Coptidis 
Rhizoma (CR), an ancient medicinal herb with diverse 
pharmacological activities, has demonstrated anti-inflam-
matory, antioxidative, and neuroprotective activities [12,  
13]. C. Rhizoma also known as Huanglian, is a traditional 
Chinese medicinal herb derived from the dried rhizome 
of Coptis chinensis and related species [14]. However, the 
detailed molecular mechanisms driving its potential thera-
peutic significance in LBD are not well characterized.
Network pharmacology and molecular docking are pow-
erful computational methodologies that have recently pro-
vided us with unprecedented insight into disease mecha-
nisms and potential therapeutic interventions [15, 16]. We 
combined an integrative bioinformatics approach to thor-
oughly explore the molecular interactions of the Coptidis 
Rhizoma compounds and biologically relevant targets in 
LBD. Using computational methods, including protein-
protein interaction networks, gene ontology analysis, 
pathway enrichment, and molecular docking simulations, 
we aim to:
• Use signature function to identify potential therapeutic 
compounds from Coptidis Rhizoma
• Investigate molecular mechanisms of engagement with 
LBD-binding targets

• Identify mechanisms by which to treat or modify Lewy 
body dementia
Our study provides the systematic investigation of the 
complex molecular networks underlying LBD, taking ad-
vantage of the extensive medicinal properties of tradition-
al herbal medicine. By connecting established knowledge 
with modern computational biology, we hope to offer an 
original addition to putative treatment approaches for this 
recalcitrant neurodegenerative disease. 

Methods and materials

Target collection for Lewy body dementia (LBD)

To get the targets connected to Lewy body dementia, 
OMIM (Online Mendelian Inheritance in Man) database 
(https://www.omim.org/, accessed on 26 March 2025) and 
NCBI (National Center for Biotechnology Information) 
database (https://www.ncbi.nlm.nih.gov/, accessed on 26 
March 2025) [17, 18]. “Lewy body dementia” was used 
as the keyword for searching. File with disease related 
genes (Targets) was downloaded for further process. The 
collected target genes then inserted in the Uniport (https://
www.uniprot.org/, accessed on 26 March 2025) database 
to determine the targets of Homo sapiens [19].

Molecule selection of Coptidis Rhizoma (CR)

TCMSP which is Traditional Chinese Medicine Systems 
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Figure 1. Chemical structures of 
the selected compounds. Illustrated 
the 2D chemical structures of the 12 
CR-derived compounds (e.g., Woren-
ine, Coptisine, Obacunone) identif-
ied in Table 1. Structures were gen-
erated using cheminformatics tools 
(e.g., SwissADME) and validated for 
consistency with PubChem entries.

https://www.omim.org/
https://www.ncbi.nlm.nih.gov/
https://www.uniprot.org/
https://www.uniprot.org/
http://www.antpublisher.com/index.php/APT/index
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Pharmacology database and analysis platform (https://
tcmsp-e.com/tcmsp.php, accessed on 26 March 2025) was 
utilized to find out the active compounds present in Cop-
tidis Rhizoma (CR) [20]. TCMSP is very useful because it 
captures relationship between drugs, targets, and diseases. 
Compounds with OB > 30% and DL > 0.18 were selected 
for following process. Moreover, molecular weight < 
500 g/mol, H-bond acceptors < 10, H-bond donor < 5, 
topological polar surface area < 150, and Moriguchi oc-
tanol–water partition coefficient ≤ 4.15 were the criteria 
that followed in compound selection for that plant [19]. 
SwissADME (http://www.swissadme.ch/, accessed on 26 
March 2025) tool was utilized to calculate those values 

[21]. 

Target collection for selected compounds/molecules

We applied CTD (Comparative Toxicogenomics Data-
base) (https://ctdbase.org/, accessed on 26 March 2025), 
and Swiss Target Prediction tool (http://www.swisstarget-
prediction.ch/, accessed on 26 March 2025), for obtaining 
the targets for the chosen molecules [22, 23]. The name of 
each molecule was used to search genes in CTD and the 
smile of each compound was applied in Swiss Target Pre-
diction tool to get targets. After that the collected target 
genes were inserted in the Uniport (https://www.uniprot.
org/, accessed on 26 March 2025) database to determine 
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Molecule name Molecular weight H-bonddonor H-bondacceptor TPSA MlogP OB% DL

Worenine 334.351 0 4 40.8 3.11622 45.83 0.87

Coptisine 320.324 0 4 40.8 2.8078 30.67 0.86

Berlambine 351.358 0 6 58.92 2.9705 36.68 0.82

Epiberberine 336.367 0 4 40.8 3.0963 43.09 0.78

Berberine 336.367 0 4 40.8 3.0963 36.86 0.78

(R)-Canadine 339.391 0 5 40.16 3.088 55.37 0.77

Obacunone 454.519 0 7 95.34 3.9246 43.29 0.77

Berberrubine 357.793 1 4 51.8 -0.2027 35.74 0.73

Palmatine 352.41 0 4 40.8 3.3848 64.6 0.65

Quercetin 302.238 5 7 131.36 1.988 46.43 0.28

Moupinamide 313.353 3 4 78.79 2.4785 86.71 0.26

Magnograndiolide 266.337 2 4 66.76 1.4062 63.71 0.19

Table 1. Selected molecules on different pharmacokinetic properties.

Figure 2. Network interactions 
analysis. (A) Intersect targets are 
showed in Venn diagram. (B) PPI 
interaction. (C) Interaction among 
top 20 hub genes. (D) Bar plots for 
top 20 hub genes with degree value.

https://tcmsp-e.com/tcmsp.php
https://tcmsp-e.com/tcmsp.php
http://www.swissadme.ch/
https://ctdbase.org/
https://www.uniprot.org/
https://www.uniprot.org/
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with cytoHubba plugin to easily recognize the targets with 
highest connections [27]. From that plugin, we got top 
twenty targets based on their degree value. Because the 
proteins (targets) which have high degree value are known 
as hub proteins and they are essential for different biologi-
cal processes and key regulations in cellular pathways 
[28]. 

Gene ontology (GO) with pathway analysis

The intersection targets of the molecules from Coptidis 
Rhizoma (CR) and Lewy body dementia (LBD) were 
evaluated using the DAVID platform (https://david.ncifcrf.
gov/, accessed on 26 March 2025) online for analyzing the 
Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway enrichment investigations 
[29]. This tool helps to study on Molecular Functions 
(MFs), Cellular Components (CCs), Biological Processes 
(BPs), and KEGG pathways. The gene list was added with 
specifying Homo sapiens and the identifier was set into 
official gene symbol. The top 10 GO items and top 10 
KEGG pathways were selected based on statistical signifi-
cance (p < 0.05) and visualized using bioinformatics web 
platforms (http://www.bioinformatics.com.cn/, accessed 
on 26 March 2024). 

MCODE Analysis

For grouping associated proteins and for developing 
functional modules using molecular complex detection 
(MCODE), the Metascape (https://metascape.org/, ac-
cessed on 26 March 2024) tool was utilized [30]. MCODE 
analysis identified protein connection complexes and 
classified them into gene clusters where each target has 

the targets of Homo sapiens [24]. 

Identification of common targets

Venny 2.1.0 tool (https://bioinfogp.cnb.csic.es/tools/
venny/, accessed on 26 March 2025) was used to identify 
the common targets for both disease and molecules [25]. 
Those intersect targets were considered as the significant 
relationship between drug molecules and disease. 

Protein-protein interaction network

We applied the String database (https://string-db.org/, ac-
cessed on 26 March 2025) for a PPI network among those 
intersect targets by specifying “Homo sapiens” as the spe-
cies with a high required score [26]. To visualize the inter-
action network, Cytoscapes 3.10.3 software was applied 

Figure 3. Gene Ontology and 
KEGG pathway analysis .  (A) 
Different gene ontology functions 
present in bar chart. (B) KEGG enr-
ichment bubble plot. (C) Different 
systems and actions of KEGG pat-
hways. (D) Chord diagram linking 
targets to diseases.

Compound Targets Compound Targets

Worenine 30,442 Obacunone 114

Coptisine 120 Berberrubine 105

Berlambine 101 Palmatine 137

Epiberberine 108 Quercetin 4574

Berberine 420 Moupinamide 104

(R)-Canadine 103 Magnograndiolide 100

Table 2. Binding interactions of retinoic acid, Somniferine, and 
donepezil with target proteins.

Note: Quantifies the number of unique protein targets per compound, 
derived from CTD and Swiss Target Prediction databases. Quercetin had 
the highest target count (4,574), while Magnograndiolide had the lowest 
(100). Targets were mapped to Homo sapiens via UniProt.

http://www.antpublisher.com/index.php/APT/index
https://david.ncifcrf.gov/
https://david.ncifcrf.gov/
http://www.bioinformatics.com.cn/
https://metascape.org/
https://bioinfogp.cnb.csic.es/tools/venny/
https://bioinfogp.cnb.csic.es/tools/venny/
https://string-db.org/


the same or comparable gene functions. Furthermore, 
transcription factors were predicted that control additional 
targets by providing information on target relationships. 
MCODE clustering analysis was performed for common 
targets based on a minimum overlap of 3, cutoff of P-value 
0.05, and 1.5 for the threshold enrichment [31]. 

Target-pathway network construction

The 21 pathways resulting from the KEGG enrichment 
analysis of CR and LBD were visualized using Cytoscape 
3.10.3 software to create a target–pathway network dia-
gram. Network topology parameters were examined, with 
targets ranked by degree value. The top 20 targets from 
this analysis were intersected with those identified in the 
PPI network to find out common targets.

Key target identification

The recognized final targets from the intersection of PPI 
network and target to pathway network were used to find 
out key targets by comparing among different topological 
properties of those intersected targets. For that reason, we 
again used the STRING (https://string-db.org/, accessed 
on 26 March 2025) online platform to create a PPI net-
work among those genes (targets) [32]. To visualize and 
analyze the network, Cytoscape along with Cytohubba 
plugin was used. We selected five topological properties 
properties Maximal Clique Centrality (MCC), Density of 

Maximum Neighborhood Component (DMNC), Bottle-
Neck, Closeness, and Degree value and utilized molbioto-
ols (https://molbiotools.com/listcompare.php, accessed on 
26 March 2025) for comparing all five properties. 

Molecular docking

Protein and compound preparation

First of all, each protein was added into Discovery Studio 
software for removing heteroatoms such as water and 
other ligands. After that, those proteins were inserted into 
Chimera X 1.19 software for further preparation [33]. In 
this process, hydrogens were added, charges and missing 
atoms were added, and the prepared proteins were saved 
as a PDB file for docking [34]. For docking, we used 
PyRx software, which has the accessibility of Autodock 
Vina. Each protein was added there and converted into 
a macromolecule, and the next grid box for each protein 
was adjusted for docking [35].
The saved SDF files of compounds were directly added 
into PyRx for docking since PyRx has access to Open 
Babel [36, 37]. The charge of each compound was mini-
mized, and those minimized charged compounds were 
converted into a PDBQT file to continue the docking pro-
cess [38].

Protein-ligand binding

The binding sites/active sites for each target were identi-

Figure 4. Expanded subset net-
work of identified common targets 
enriched with high-significance 
terms. (A) Representation of high-
significance enrichment terms. 
The colors in the bars represent the 
significance of different biological 
processes, pathways, or functions. 
Darker shades indicate higher 
significance levels based on the 
−log10 (P) value, while lighter 
shades represent lower significance. 
This helps visually distinguish the 
most statistically relevant terms in 
the dataset. (B) Detailed subnetwork 
illustrating specific interactions 
within the identified target network.
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fied by using Discovery Studio’s predictions and the grid 
boxes optimized around the binding areas suggested by 
the software [39-41]. Active sites help to adjust the grid 
box according to protein. Discovery Studio is a useful 
software and helped to find out the active sites quickly 
[42]. While binding affinity is an important parameter, 
ligand interactions also depend on chemical properties, 
steric interactions, and protein flexibility, which influence 
binding to specific residues [43-45]. The grid box was set 
into center: x = -3.6673, y = -19.8314, z = -2.5260 and 
dimensions: x = 28.6315, y = 33.3054, z = 25.0000 for 
GBA (PDB ID: 6TA3). The grid box was set into center: 
x = 24.0622, y = -6.0253, z = -24.0138 and dimensions: 
x = 25.0259, y = 17.0974, z = 18.8013 for MAPT (PDB 
ID: 2MZ7). The box was selected into center: x = 3.9566, 
y = 1.4492, z = 2.4175 and dimensions: x = 17.3632, y = 
22.0490, z = 17.3590 for TARDBP (PDB ID: 2CQG). The 
box was fixed into center: x = 237.5219, y = 82.2100, z = 
-13.4109 and dimensions: x = 32.4387, y = 26.0723, z = 
39.6527 for SNCA (PDB ID: 1XQ8). Finally, for PRKN 
(PDB ID: 5C1Z) the grid box was fixed into center: x = 
-14.7309, y = 15.0906, z = 8.3024 and dimensions: x = 
36.3893, y = 35.0225, z = 25.0000.  

Results

Targets for disease 

To identify potential disease-associated targets for Lewy 
body dementia, we collected 331 targets from the OMIM 
and NCBI databases. After filtering duplicate entries, 228 
unique targets were identified and analyzed further to un-
derstand their potential relevance to disease pathology.

Molecule selection 

The selection process for active molecules in Coptidis 
Rhizoma followed specific pharmacokinetic and drug-
likeness criteria. A total of 12 molecules met the required 
threshold for oral bioavailability and drug-likeness, en-
suring their potential effectiveness in targeting disease-
related pathways (Table 1, Figure 1). Because Lipinski’s 
Rule of Five defines key physicochemical constraints for 
oral drug absorption, including molecular weight below 
500 Da, fewer than 5 hydrogen bond donors, fewer than 
10 hydrogen bond acceptors, and an octanol-water parti-
tion coefficient (log P) under 5 [46]. Additionally, topo-
logical polar surface area (TPSA) below 140 Å² enhances 
membrane permeability and blood-brain barrier penetra-
tion, which is critical for central nervous system drugs [47, 
48]. Furthermore, OB > 30% signifies that the compound 
exhibits greater than 30% oral bioavailability, meaning 
effective absorption into systemic circulation via oral ad-

Figure 5. Protein-protein interaction 
(PPI) network enriched with compr- 
ehensive diagrammatic representat-
ions of distinct cluster modules.
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ministration [49]. DL > 0.18 signifies drug-likeness, such 
that the compound displays characteristics associated with 
drugs, and it can be a candidate for drug development 
[50]. The requirements select molecules with favorable 
pharmacokinetics and drug-like activity to enhance drug 
discovery success chances [51].
The 12 bioactive compounds from Coptidis Rhizoma 

(CR) were selected based on a set of pharmacokinetic and 
drug-likeness criteria to ensure their potential as central 
nervous system-active agents. Key selection parameters 
included a molecular weight below 500 g/moL, in accor-
dance with Lipinski’s Rule of Five, which supports drug 
absorption and permeation. The number of hydrogen bond 
donors and acceptors was restricted to fewer than 5 and 

Color MCODE GO Description Log10 (P)

Red MCODE_1 GO:0045321 leukocyte activation -9.2

Red MCODE_1 GO:1902903 regulation of supramolecular fiber organization -8.9

Red MCODE_1 GO:0051129 negative regulation of cellular component organization -8.7

Blue MCODE_2 M153 PID P75 NTR Pathway -9.5

Blue MCODE_2 R-HSA-205043 NRIF signals cell death from the nucleus -9.0

Blue MCODE_2 R-HSA-204998 Cell death signaling via NRAGE, NRIF and NADE -6.9

Green MCODE_3 R-HSA-418594 G alpha (i) signaling events -7.4

Green MCODE_3 R-HSA-388396 GPCR downstream signaling -6.2

Green MCODE_3 R-HSA-372790 Signaling by GPCR -6.0

Blue MCODE_4 WP5426 HDAC6 interactions in the central nervous system -6.3

Orange MCODE_5 R-HAS-190861 Gap junction assembly -8.8

Orange MCODE_5 R-HAS-190828 Gap junction trafficking -8.6

Orange MCODE_5 R-HAS-157858 Gap junction trafficking and regulation -8.5

Table 3. Pathway enrichment result for MCODE1, MCODE2, MCODE3, MCODE4, and MCODE5.

Figure 6. Target-pathway network 
interaction and common targets 
identification. (A) Pathway-target 
network diagram. (B) PPI network 
among top 20 targets. (C) Similar 
ta rge t  ident i f ica t ion  be tween 
PPI network and target-pathway 
network. (D) Bar chart for top 20 
genes with degree value.
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10, respectively, to maintain favorable pharmacokinetics. 
The topological polar surface area (TPSA) was required 
to be under 150 Å², a crucial factor for predicting the 
compounds' ability to cross the blood-brain barrier. Lipo-
philicity was assessed using the Moriguchi octanol-water 
partition coefficient (MlogP), with an optimal threshold of 
≤ 4.15. Additionally, compounds with oral bioavailability 
(OB) greater than 30% were prioritized to ensure effective 
systemic absorption. Lastly, a drug-likeness (DL) score 

above 0.18 was used to confirm structural and physico-
chemical features consistent with known drug compounds.

Target collection for molecules 

For the selected compounds, a total of 36,441 targets were 
identified where 5954 were duplicated and 30,487 targets 
were unique. From gene mapping we got 15,499 final tar-
gets for those molecules. The number of targets for each 
molecule is given in Table 2.

Figure 7. Identification of key 
targets based on different prop-
erties. (A) Constructed network 
between the 18 hub genes. (B) 
Identifying common targets based 
on topological properties.

Figure 8. Gene ontology enrichm-
ent analysis for cellular compon-
ents and molecular functions ba-
sed on the 18 common hub genes. 
This figure illustrates the enrichment 
of gene ontology terms, with panel 
(A) focusing on cellular components 
and panel (B) highlighting molecu-
lar functions.
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Protein-protein interaction network 

To establish molecular connections between Lewy body 
dementia and Coptidis Rhizoma compounds, the common 
target genes were identified. Among the collected 226 
disease-related targets and 15,499 compound-associated 
targets, 214 common genes were found using the Venny 
tool (Figure 2A). These intersecting targets suggest a sig-
nificant relationship between the herbal compounds and 
disease pathology. After that the genes of interest were 
subjected to insert in String for creating a PPI network. 
The network was constructed with 182 nodes and 606 
edges (Figure 2B). By focusing on degree value of the 
nodes, we calculated the top 20 targets with the Cyto-
hubba plugin. The top 20 hub genes are shown in Figure 
2C. NGF, NEFL, MTOR, MAPT, ITGAM, GRN, GBA, 
APP, APOE, ANXA5, AIF1, TARDBP, SQSTM1, SNCA, 
SLC6A3, PSEN2, PRKN, PINK1, PRARK7, and NTRK1 
are the identified key nodes (Figure 2D).

Gene ontology (GO) with pathway analysis 

To better understand the biological significance of the 
identified targets, we performed GO and KEGG path-
way enrichment analysis using the DAVID platform. The 

analysis exhibited a total of 764 entries where Biological 
Process (BP) showed 212 results, Cellular components 
(CC) showed 213 results, 209 for Molecular functions 
(MF), and 130 results for KEGG pathway. BP terms dis-
played Negative regulation of neuron apoptotic process, 
adult locomotory behavior, cellular response to oxida-
tive stress, microglial cell activation, dopamine uptake 
involved in synaptic transmission, neuron apoptotic pro-
cess, regulation of mitochondrion organization, synapse 
organization, response to oxidative stress, and regulation 
of dopamine secretion (Figure 3A). Axon, membrane raft, 
dendrite, neuron projection, synaptic vesicle, lysosome, 
neuronal cell body, Golgi apparatus, growth cone, and 
lysosomal membrane were present in cellular components 
(Figure 3A). On the other hand, MF terms showed protein 
binding, ubiquitin protein ligase binding, identical pro-
tein binding, amyloid-beta binding, cuprous ion binding, 
protein-containing complex binding, enzyme binding, sig-
naling receptor binding, structural molecule activity, and 
kinesin binding (Figure 3A). 
Top 10 pathways were added in KEGG pathway en-
richment plot based on P-value to visualize the most 
significant pathways related to disease where pathways 
of neurotrophin signaling pathway and pathways of 

Figure 9. KEGG pathway and 
gene ontology biological process e-
nrichment analysis based on the 
18 common hub genes. This figure 
presents enrichment analysis results, 
highlighting KEGG pathways (A) 
and Gene Ontology biological proc-
esses (B).
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neurodegeneration-multiple diseases are showing as 
highly significant pathways (Figure 3B). Furthermore, the 
21 KEGG pathways based on p-value were selected for 
mapping. Those pathways were mapped on metabolism, 
environmental information processing, cellular process, 
organismal systems, and human diseases. The bars present 
that most of the pathways are involved in human diseases 
(Figure 3C). Additionally, we constructed a chord diagram 
based on targets related to different diseases to identify 
the associated diseases. The plot shows that Parkinson 
disease and Lewy body disease as the best results (Figure 
3D). The colorful bubbles in the plot represents the -log10 

(p-value) with a gradient from green to red. The red color 
indicates a higher -log10(p-value) which is more signifi-
cant, while green indicates a lower -log10(p-value) which 
means less significant (Figure 3B).

MCODE analysis 

The MCODE algorithm was utilized to find out the core 
therapeutic targets and based on this we constructed a 
modular network. Positive regulation of protein localiza-
tion, regulation of neuron apoptotic process, behavior, 
inflammatory response, and response to oxidative stress 
are some of the functions from the topological analysis 

Figure 10. Comprehensive Structural and 
Interaction Analysis of Ligand (Coptisine) 
Binding to Protein (GBA).  This figure 
presents a multi-layered examination of ligand 
binding within a protein’s active site. The 
leftmost panel visualizes the protein’s surface 
representation, highlighting the ligand within 
the active site. The middle panel showcases the 
ribbon model, emphasizing secondary structure 
elements surrounding the ligand. The rightmost 
panel provides a molecular interaction map, 
detailing conventional hydrogen bonds, carbon 
hydrogen bonds, Pi-Pi T-shaped interactions, 
alkyl interactions, and Pi-alkyl interactions. 
Key amino acids engaged in these interactions 
include LEU A:493, SER A:38, PRO A:32, 
PRO A:29, PRO A:428, and HIS A:451. 

Figure 11.  Molecular Interaction of a 
Ligand (Obacunone) with Protein’s (MAPT) 
binding site. This figure provides an in-depth 
visualization of the ligand binding to a protein's 
active site. The leftmost panel illustrates the 
ligand embedded within the protein’s surface, 
represented in purple. The middle panel 
showcases the ribbon model, highlighting 
secondary structure elements surrounding the 
ligand, with atomic colors (carbon in light 
blue, oxygen in red, nitrogen in blue) reflecting 
molecular composition. The rightmost panel 
presents a detailed interaction map, depicting 
convent ional  hydrogen bonds (green) , 
carbon hydrogen bonds (white), and pi-anion 
interactions (orange). Key interacting residues 
include HIS A:268 and ASP A:283, which play 
a crucial role in ligand stabilization.

Figure 12. Detailed Structural Analysis of 
Ligand (Obacunone) Binding to Pro-tein 
(TARDBP). This figure provides a comp-
rehensive visualization of a ligand binding to a
protein’s active site. The leftmost panel disp-
lays the protein’s surface representation with 
the ligand nestled in the binding pocket. The 
middle panel offers a ribbon model view, emp-
hasizing secondary structure elements surro-
unding the ligand. The rightmost panel presents 
an interaction map, detailing carbon hydrogen 
bonds and Pi-alkyl interactions with specific 
amino acids, ASN A:179 and LYS A:176. 
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in Metascape (Figure 4A). To understand the relation-
ship between pathways and targets, a subset network was 
constructed (Figure 4B). This network helps us to find out 
different important functions of targets within different 
clusters. Moreover, the Metascape performed MCODE 
cluster analysis on the 214 intersect genes. That analysis 
provided 5 target modules in treating Lewy body demen-
tia by using those selected compounds (Figure 5). These 
modules help to get the biological pathways that might be 
present in therapeutic impacts on the disease. 
Notably, these modules are enriched in different pathways, 
such as leukocyte activation, PID P75 NTR PATHWAY, 
G alpha (i) signaling events, HDAC6 interactions in the 
central nervous system, and Gap junction assembly (Table 
3, Figure 5).

Target-pathway network  

To visualize the connections between identified targets 
and key biological pathways, a target-pathway interaction 
network was constructed by using Cytoscape 3.10.3. The 
network consisted of 208 nodes and 667 edges (Figure 
6A), allowing the identification of the top 20 hub genes 
with significant pathway involvement. The deep blue 
circle shape represents the pathways and red circle shapes 
indicating target components. After that a network con-
structed among the top 20 targets based on their degree 
value by using cytohubba plugin in Cytoscape (Figure 

6B) and their degree values are present in bar chart (Fig-
ure 6C). PINK1, PARK7, NTRK1, NRAS, NGF, MTOR, 
TARDBP, SQSTM1, SNCA, PSEN2, PRKN, MAPT, IT-
GAM, GBA, APP, APOE, MFN2, SLC6A3, ANXA5, and 
GRN are the top 20 hub genes from the target-pathway 
network. To get the common targets, the top 20 targets 
from protein-protein interaction and the top 20 targets 
from target-pathway network interaction were used to 
intersect and visualized in Venn diagram (Figure 6D). Fi-
nally, NGF, MTOR, MAPT, ITGAM, GRN, GBA, APP, 
APOE, ANXA5, TARDBP, SQSTM1, SNCA, SLC6A3, 
PSEN2, PRKN, PINK1, PARK7, and NTRK1 were iden-
tified as significant targets.

Key targets selection 

The PPI network from String database was subjected to 
use in Cytoscape software to get top ten genes for the five 
different topological properties Maximal Clique Centrality 
(MCC), Density of Maximum Neighborhood Component 
(DMNC), Bottle-Neck, Closeness, and Degree value. 
We created a simple network of the common 18 targets 
from PPI network and target-pathway network to visual-
ize their interactions (Figure 7A). A Venn diagram among 
the five topological properties was constructed to identify 
the common targets (Figure 7B). GBA, MAPT, PRKN, 
SNCA, and TARDBP are the common targets among 
those properties. 

Figure 13. Detailed structural analysis of 
ligand (Worenine) binding with a Protein 
(SNCA). This figure presents an in-depth 
examination of the ligand binding within 
the protein’s active site. The leftmost panel 
illustrates the protein’s surface representation, 
showing the ligand positioned within the 
binding pocket. The middle panel highlights the 
ribbon model, emphasizing secondary structure 
elements surrounding the ligand. The rightmost 
panel provides a molecular interaction map, 
detailing conventional hydrogen bonds, carbon 
hydrogen bonds, Pi-Pi T-shaped interactions, 
and Pi-alkyl interactions. Key residues 
involved include Lysine (Lys) at positions A:32 
and A:43, as well as Tyrosine (Tyr) at position 
A:39. 

Figure 14. Structural analysis of ligand 
(Obacunone) binding in protein (PRKN). 
This figure presents a detailed structural 
examination of a ligand binding within a 
protein's active site. The left panel displays 
the protein’s surface representation, showing 
the ligand positioned in the binding pocket. 
The middle panel highlights the secondary 
structure of the protein, emphasizing helices 
and the ligand's placement. The right panel 
provides a molecular interaction map, detailing 
key residues—Lysine (Lys) A:32, Lysine 
(Lys) A:43, and Tyrosine (Tyr) A:39—and the 
types of interactions, including conventional 
hydrogen bonds, carbon hydrogen bonds, Pi-Pi 
T-shaped interactions, and Pi-alkyl interactions. 
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The analysis of the two figures reveals significant enrich-
ment of pathways and gene ontology (GO) terms associ-
ated with neurodegenerative diseases and neuronal func-
tion. In Figure 8A, KEGG pathway enrichment highlights 
key neurodegenerative conditions, including Parkinson's 
disease, Alzheimer's disease, amyotrophic lateral sclerosis 
(ALS), and mitophagy, with highly significant false dis-
covery rates (FDRs) ranging from 1.7e-06 to 1.0e-03. The 
neurotrophin signaling pathway was also prominent, sug-
gesting a role in neuronal survival and maintenance. Ad-
ditionally, biological process GO terms such as regulation 
of neuron apoptosis, dopamine transport, and microglial 
cell activation were enriched, with extremely low FDRs 
(as stringent as 1.0e-13), underscoring their importance in 
neuronal health and degeneration (Figure 8B).
Figure 9 further supports these findings by identifying 
enriched cellular components and molecular functions. 
Cellular structures like Lewy bodies—a hallmark of Par-
kinson’s disease—along with neuronal cell bodies, axons, 
and glial projections were significantly enriched (Figure 
9A). Molecular function analysis revealed critical roles 
for protein-binding activities, including chaperone binding 
(e.g., heat shock proteins), neurotrophin receptor binding, 
and ubiquitin-related processes, all of which are impli-
cated in protein misfolding and degradation pathways 
(Figure 9B). These results collectively emphasize disrup-
tions in protein homeostasis, mitochondrial function, and 
neuronal survival mechanisms, providing a molecular 
framework for understanding neurodegeneration. The 
consistent involvement of these pathways suggests poten-
tial therapeutic targets for mitigating neuronal damage in 
related disorders. 

Docking result 

Molecular docking was employed to assess the binding 
interactions between selected bioactive compounds and 

key proteins implicated in Lewy body dementia. The 
docking results provided valuable insights into ligand-
protein affinity, where compounds such as Obacunone and 
Coptisine demonstrated strong interactions, reinforcing 
their potential for therapeutic applications (Figure 10-14). 
The lower the binding affinity means the stronger interac-
tion between a compound and protein. The binding results 
of the targets and compounds were summarized in Table 4 
and most of the affinities were less than -5 kcal/mol. Usu-
ally, the binding value less than -7 kcal/mol means strong 
predicted binding, value less than -5 kcal/mol suggests 
moderate binding [52].
The molecular docking results presented compelling evi-
dence for the therapeutic potential of various compounds, 
particularly regarding their interactions with five key tar-
get proteins: GBA, MAPT, TARDBP, SNCA, and PRKN. 
The docking scores, which indicate binding affinities, sug-
gest that certain compounds exhibit strong potential for 
protein-ligand interactions (Table 4, Figure 15). Among 
them, Obacunone demonstrated the highest binding affini-
ties, showing significant interactions with GBA (-9.4 kcal/
mol), MAPT (-7.0 kcal/mol), TARDBP (-6.4 kcal/mol), 
and PRKN (-9.2 kcal/mol). These consistently strong 
binding affinities suggest that Obacunone may be par-
ticularly effective in engaging multiple biological targets, 
which could make it a promising candidate for further 
study, particularly in cases where these proteins play criti-
cal roles in disease mechanisms.
Additionally, Coptisine and Worenine exhibited notable 
binding affinities, reinforcing their potential in molecular 
interaction studies (Table 4, Figure 15). Coptisine showed 
a high affinity for GBA (-9.4 kcal/mol), comparable to 
Obacunone, suggesting that its molecular structure is 
well-suited for interacting with this protein’s binding site. 
Meanwhile, Worenine exhibited the strongest interaction 
with SNCA (-7.4 kcal/mol), an observation that could be 

Compound name Compound CID

Protein name

GBA MAPT TARDBP SNCA PRKN

Binding affinity (kcal/mol)

Worenine 20055073 -9.3 -6.6 -6.2 -7.4 -8.9

Coptisine 72322 -9.4 -6.2 -6.0 -7.1 -8.7

Berlambine 11066 -8.8 -5.9 -5.9 -6.7 -8.3

Epiberberine 160876 -8.7 -5.7 -5.7 -6.4 -7.8

Berberine 2353 -8.8 -5.8 -5.5 -6.4 -7.8

(R)-Canadine 443422 -8.0 -5.8 -5.9 -6.4 -7.7

Obacunone 119041 -9.4 -7.0 -6.4 -7.1 -9.2

Berberrubine 72704 -8.7 -5.9 -5.9 -6.6 -8.2

Palmatine 19009 -8.2 -5.4 -5.1 -6.0 -7.4

Quercetin 5280343 -8.5 -5.9 -5.6 -6.3 -8.0

Moupinamide 5280537 -7.7 -6.2 -5.8 -5.8 -7.6

Magnograndiolide 5319198 -8.1 -5.2 -5.5 -6.0 -7.4

Table 4. Binding scores of different targets with different molecule.
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particularly relevant for studying neurodegenerative dis-
orders such as Parkinson’s disease, given SNCA’s role in 
disease pathology. These findings suggest that both Cop-
tisine and Worenine warrant further exploration to deter-
mine their specific mechanisms of binding and biological 
relevance.
In contrast, Magnograndiolide and Moupinamide exhib-
ited weaker affinities across multiple proteins. Magno-
grandiolide recorded the weakest interactions with MAPT 
(-5.2 kcal/mol) and TARDBP (-5.5 kcal/mol), indicating 
relatively weak engagement with these targets. Similarly, 
Moupinamide showed the lowest binding affinity for 
SNCA (-5.8 kcal/mol), suggesting limited interaction sta-
bility with this protein (Table 4, Figure 15). These higher 
binding energy values indicate reduced molecular interac-
tion, potentially limiting the therapeutic effectiveness of 
these compounds unless structural modifications are made 
to enhance their affinity.
When assessing overall trends across the docking data, 
GBA exhibited the strongest average affinity (-8.6 kcal/
mol), followed closely by PRKN (-8.0 kcal/mol), suggest-
ing that these proteins may have well-defined active sites 
conducive to stable ligand binding. Conversely, MAPT 
and TARDBP displayed the weakest average binding af-
finities (approximately -5.9 kcal/mol each).

Discussion

Our computational study provides valuable insights into 
the therapeutic potential of Coptidis Rhizoma (CR) in 
treating Lewy body dementia (LBD). By integrating 
bioinformatics approaches, we explored the molecular 
interactions between CR compounds and LBD-associated 
targets, unveiling a complex network of therapeutic 
mechanisms. Through protein-protein interaction (PPI) 
network analysis, we identified 20 critical hub genes, 
including TARDBP, MAPT, GBA, SNCA, and PRKN, 

which play essential roles in neurodegenerative processes. 
MAPT stabilizes microtubules, though its aggregation 
forms neurofibrillary tangles, contributing to neurodegen-
eration [53, 54]. GBA mutations lead to lysosomal dys-
function, promoting α-synuclein accumulation and Lewy 
body pathology [55-57]. SNCA aggregates interfere with 
synaptic transmission and neuronal integrity, exacerbat-
ing neurodegenerative decline [58, 59]. PRKN regulates 
mitochondrial homeostasis and mitophagy, with dysfunc-
tion impairing cellular clearance mechanisms [60-62]. Ad-
ditionally, TARDBP is involved in RNA processing and 
stress granule formation, with its mis-localization leading 
to neuronal dysfunction and inclusion body formation, a 
hallmark of several neurodegenerative diseases [63-65]. 
These targets highlight key molecular drivers of Lewy 
body dementia (LBD), suggesting that Coptidis Rhizoma 
(CR) compounds may modulate neuroprotective pathways 
and offer promising therapeutic interventions.
The pathway analysis revealed that CR compounds signif-
icantly impact neurotrophic signaling, oxidative stress re-
sponse, synaptic transmission, and mitophagy regulation, 
all of which are integral to LBD pathology. The neuro-
trophic signaling pathway supports neuronal survival and 
regeneration [66, 67], while oxidative stress regulation is 
crucial in mitigating neurodegenerative damage [68, 69]. 
Synaptic transmission stabilization, particularly involving 
SNCA and dopaminergic pathways, suggests a possible 
improvement in cognitive function and motor coordina-
tion [70, 71]. Additionally, CR compounds may enhance 
mitophagy and autophagy regulation, particularly through 
interactions with PRKN, which is essential in maintaining 
mitochondrial integrity. Together, these findings indicate a 
multi-target therapeutic mechanism where CR compounds 
could simultaneously restore neurotrophic support, reduce 
oxidative damage, and enhance neuronal clearance pro-
cesses.
For a proper molecular docking, the active site of each 
protein was identified using Discovery Studio [72], a 

Figure 15. Heatmap of molecular 
docking-based binding affinities 
( in kcal/mol) between natural 
compounds and Lewy body dem-
entia associated protein targets 
(GBA, MAPT, TARDBP, SNCA, 
PRKN). Red gradient indicates 
stronger binding (Higher Affinity = 
Darker).
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widely recognized computational tool known for its robust 
structural analysis capabilities [73-75]. Unlike online tools 
that merely confirm the presence of an active site, Discov-
ery Studio allows a more refined approach, enabling pre-
cise characterization based on ligand interactions, binding 
pocket geometry, and energetic considerations [76, 77]. 
This level of structural validation strengthens the reliabil-
ity of the identified active sites, ensuring consistency with 
established biochemical principles.
Molecular docking was utilized to evaluate the binding 
interactions between bioactive compounds from Coptidis 
Rhizoma (CR) and key proteins implicated in Lewy body 
dementia (LBD). The findings highlight strong affinity 
between several compounds and LBD-associated targets, 
suggesting potential therapeutic applications. Among the 
tested molecules, Obacunone exhibited the highest binding 
affinity, particularly interacting with GBA (-9.4 kcal/mol) 
and PRKN (-9.2 kcal/mol). This suggests a strong likeli-
hood of Obacunone modulating the biological function of 
these proteins, potentially contributing to neuroprotection. 
Similarly, Coptisine demonstrated notable interaction with 
GBA (-9.4 kcal/mol), reinforcing its therapeutic relevance. 
The robust binding affinities of these compounds indicate 
promising potential for further investigation. On the other 
hand, compounds like Magnograndiolide and Moupin-
amide displayed weaker binding, particularly for MAPT 
and TARDBP, with docking scores around -5 kcal/mol. 
Such interactions suggest a lower likelihood of significant 
biological engagement, although structural modifications 
may enhance their efficacy.
Our research builds upon existing knowledge by bridging 
traditional herbal medicine with advanced computational 
methodologies. The identification of close associations 
with Parkinson's disease and Lewy body dementia path-
ways highlights the interconnected nature of neurodegen-
erative disorders. The modular network analysis further 
demonstrated five distinct target modules enriched in vari-
ous signaling pathways, offering a sophisticated perspec-
tive on potential therapeutic interventions.
While our computational approach provides valuable 
insights, it is essential to acknowledge its inherent limi-
tations. The in-silico methods necessitate subsequent 
experimental validation, and the complexity of neurode-
generative diseases demands multifaceted research ap-
proaches. The individual variability in disease progression 
represents another critical factor that current computa-
tional models cannot fully capture. MD simulations were 
not included in this study, but they could provide deeper 
insights into ligand-protein dynamics, binding stability, 
and long-term molecular interactions. Future research 
should prioritize in vitro and in vivo studies to validate 
our computational predictions, particularly focusing on 
the pharmacokinetics, neuroprotective effects, and blood-
brain barrier permeability of CR compounds. Investigat-
ing multi-target drug development strategies may also 
enhance therapeutic efficacy, providing a foundation for 
clinical advancements in LBD treatment.

Conclusions

In conclusion, our computational study provides ground-
breaking insights into the potential therapeutic mecha-
nisms of Coptidis Rhizoma (CR) compounds for Lewy 
body dementia (LBD) through advanced bioinformatics 
methodologies. By identifying 214 common targets be-
tween CR compounds and LBD, we unveiled a complex 
molecular network underlying neurodegeneration, with 
protein-protein interaction analysis highlighting critical 
hub genes including TARDBP, MAPT, GBA, SNCA, 
and PRKN that are pivotal in understanding the disease's 
molecular pathogenesis. Molecular docking simulations 
demonstrated remarkable binding interactions, particu-
larly for compounds like Coptisine and Obacunone, which 
showed promising affinities for key proteins. Gene ontol-
ogy and pathway enrichment analyses uncovered essential 
biological processes including neuronal apoptosis regula-
tion, oxidative stress response, and synaptic transmission, 
offering potential therapeutic intervention targets. By 
bridging traditional herbal medicine with computational 
techniques, our research presents a novel approach to 
exploring LBD treatment strategies, integrating network 
pharmacology and molecular docking into a promising 
research framework. While our computational approach 
provides valuable insights, the need for experimental vali-
dation remains critical, suggesting future studies should 
focus on in vitro and in vivo investigations to confirm our 
computational predictions and explore the therapeutic po-
tential of Coptidis Rhizoma compounds in addressing this 
complex neurodegenerative disorder.
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