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Abstract
The decline of one’s cognitive skills owing to aging along with conditions like Parkinson’s and Alzheimer’s 
disease is partly caused by changes in the expression of relevant genes, which do not require the sequence of 
DNA to be altered. This study looks at the processes of DNA methylation, histone alterations, and non-coding 
RNAs in cognitive decline, concentrating on their effects on synaptic plasticity, neuroinflammation, and surviv-
ability of neurons. New treatment approaches targeting these epigenetic mechanisms, for example, HDAC and 
DNMT inhibitors, appear to be helpful in reducing cognitive deficits. Changes in one’s lifestyle, for example, 
diet and physical activity, could have an effect on brain functioning and may alter the patterns of gene expres-
sion. Having said that, the potential of epigenomic therapeutics is enormous, but there are still limitations in 
specificity and practical implementation. There is a strong potential in using a personalized approach based 
on multi-omics and novel artificial intelligence technology to optimize therapeutic approaches to age-related 
cognitive impairment. Further research needs to be conducted to ensure the safety, accuracy, and effectiveness 
of the treatment aimed at improving the brain health of the elderly.
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Cognitive decline in aging is a multifaceted process in-
fluenced by genetic, environmental, and epigenetic fac-
tors. Unlike genetic mutations, epigenetic modifications 
regulate gene activity dynamically and reversibly, making 
them attractive targets for therapeutic intervention [1]. 
This letter uniquely integrates evidence across the spec-
trum of epigenetic modifications and their implications for 
cognitive aging. Additionally, we provide useful insights 
into how artificial intelligence is transforming this field by 
enabling more precise and personalized approaches. Our 
analysis indicates that combination approaches targeting 
multiple epigenetic pathways simultaneously may yield 
superior outcomes compared to single-target interven-
tions.

Epigenetic changes, such as DNA methylation, histone 
modifications, and non-coding RNAs, regulate gene activ-
ity without altering the DNA sequence. DNA methylation 
is a crucial epigenetic modification that regulates gene 
expression by adding methyl groups to cytosine residues, 
often leading to gene silencing. Studies have demonstrat-
ed that hypermethylation of genes involved in synaptic 
plasticity and memory, such as brain-derived neurotrophic 
factor (BDNF) and reelin, correlates with cognitive im-
pairment in aging individuals [2]. Furthermore, Histones 
undergo various modifications, including acetylation 
(addition of acetyl groups that loosens DNA packaging, 
enabling gene expression), methylation, and phosphoryla-
tion, which influence chromatin structure and gene acces-
sibility. Age-associated reductions in histone acetylation, 
mediated by increased histone deacetylase (HDAC) ac-
tivity, are linked to cognitive decline [3]. HDAC inhibi-
tors (HDACi), such as vorinostat and sodium butyrate, 
have shown promise in preclinical studies for enhancing 
memory function by restoring histone acetylation levels 
[4]. Recent studies have introduced selective HDAC2 
inhibitors, like JRM-28, that show promise in improving 
memory and synaptic plasticity while reducing side ef-
fects, paving the way for new treatments for neurodegen-
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erative diseases [5]. Moreover, Non-coding RNAs, includ-
ing microRNAs (miRNAs) and long non-coding RNAs 
(lncRNAs), regulate post-transcriptional gene expression. 
Specific miRNAs are involved in modulating neuroinflam-
mation and synaptic plasticity, indicating their potential as 
therapeutic targets for cognitive aging. For instance, miR-
132 and miR-124 have emerged as critical regulators of 
synaptic function, with age-related decreases correlating 
with cognitive deficits in human studies [6, 7].
Lifestyle interventions, including regular exercise and 
polyphenol-rich diets, regulate epigenetic mechanisms, 
improving neural resilience. For instance, moderate-inten-
sity exercise increases BDNF via histone acetylation [8]. 
A meta-analysis consistently showed cognitive enhance-
ment [9]. Polyphenol-rich diets, such as those including 
green tea and curcumin, modulate DNA methylation 
patterns, enhance neural resilience, and support synaptic 
plasticity while reducing neuroinflammation [10]. Table 1 
summarizes interventions below. The mechanisms of syn-
aptic plasticity, neuroinflammation, and neuronal survival 
rate are present in Table 2.
Recent advancements in AI-driven approaches are revo-

lutionizing epigenetic research in cognitive aging. Deep 
learning models, such as in Deep-PGD, identify methyla-
tion patterns in the prefrontal cortex predictive of HDAC 
inhibitor responsiveness [16]. Neural networks integrate 
multi-omics data (epigenomics, transcriptomics, and pro-
teomics) for personalized cognitive therapies. Machine 
learning models in distinguishing aging-related epigenetic 
shifts from Alzheimer’s alterations [17]. These innova-
tions promise earlier intervention and enhanced therapeu-
tic precision.
Epigenetic mechanisms play a crucial role in cognitive 
aging, offering novel targets for therapeutic intervention. 
Unlike previous reviews that examined isolated mecha-
nisms, our analysis integrates findings across multiple 
epigenetic pathways and highlights their collective impact 
on cognitive function. While lifestyle modifications and 
pharmacological approaches show promise, further re-
search is needed to improve specificity and clinical appli-
cability. AI-driven epigenetics is emerging as a powerful 
tool for optimizing personalized treatments, potentially 
revolutionizing cognitive health interventions in aging 
populations. Our synthesis suggests that combination ap-
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Intervention Mechanism Empirical evidence Reference

HDAC inhibitors Histone acetylation, enhancing gene expression Vorinostat improved memory in preclinical models [11]

DNMT inhibitors DNA methylation reduction, reactivating genes 5-azacytidine restored neuroprotective gene expres-
sion [12]

Polyphenol-rich diet BDNF promoter methylation modulation Clinical trial showed reduced BDNF methylation [10]

Regular exercise Increased BDNF levels via epigenetic regulation Meta-analysis demonstrated cognitive benefits [9]

Table 1. Specific empirical evidence for each intervention.

Mechanism Biological impact Implications Reference

Synaptic plasticity Strengthening or weaking of synapses Essential foe learning and memory [13]

Neuroinflammation Activation of immune cells causing neural damage Connected with cognitive decline in neurodegen-
erative diseases [14]

Neuronal survival rate Rate of neuron viability under stress Influences neuroplasticity and recovery [15]

Table 2. Key epigenetic mechanisms affecting cognitive function.

proaches targeting multiple epigenetic pathways simulta-
neously, guided by AI-based precision medicine, represent 
the most promising future direction in this field. 
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