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Abstract

Inflammaging, characterized by chronic, low-grade inflammation associated with aging, is a key contributor
to age-related diseases, including cardiovascular disorders, neurodegenerative conditions, and metabolic syn-
dromes. The intricate interplay between inflammaging and the human microbiota—a diverse ecosystem of
microorganisms regulating immune, metabolic, and neurological functions—is crucial in understanding these
processes. Aging leads to significant shifts in microbiota composition, resulting in dysbiosis, which fosters pro-
inflammatory states and systemic inflammation. Age-related changes in the gut microbiota and microbial me-
tabolites, such as short-chain fatty acids and secondary bile acids, influence inflammation through pathways
like Toll-like receptor signaling and cytokine production. Microbial dysbiosis impacts immune responses and
gut barrier integrity, contributing to inflammaging and its associated pathologies. Interventions targeting gut
health, including dietary modifications, probiotics, prebiotics, and fecal microbiota transplantation, offer po-
tential strategies to mitigate these effects. Advances in bioinformatics and microbiota research enable the de-
velopment of targeted treatments aimed at improving longevity and reducing chronic inflammation. Intestinal
epithelial cells play a central role as physical and antimicrobial barriers, while also mediating microbiota-host
immune signaling. Aging-related changes to intestinal epithelial cells, microbiota composition, and immune
function disrupt immune homeostasis and exacerbate inflammaging. Environmental factors, including diet and
medications, further influence gut microbiota and immune function, either preventing or promoting inflam-
maging. Lifestyle and pharmacological interventions are suggested to promote healthy aging and reduce the
adverse effects of chronic inflammation.
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Introduction One of the hallmarks of aging is the body’s increasing in-
ability to maintain homeostasis, particularly in immune
system regulation [2, 3]. Inflammaging, the chronic, low-
grade inflammation associated with aging, has emerged as
a crucial mechanism underlying age-related pathologies,
including cardiovascular disease, cancer, and neurodegen-
erative disorders [4-6]. While the exact causes are not ful-
ly understood, it is believed that a combination of immu-
nosenescence (the decline in immune function with age),
cellular senescence (the process by which cells lose the
ability to divide), and environmental factors (such as diet

Aging is a complex, multifactorial process marked by the
progressive deterioration of physiological functions [1].
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mation is essential for tissue repair and immune function,
its persistent, dysregulated state accelerates aging and
exacerbates the onset of age-related diseases. This para-
doxical relationship arises from the sustained activation
of immune cells such as macrophages and neutrophils,
which secrete pro-inflammatory cytokines that contribute
to systemic tissue damage [8, 9].

Inflammaging is characterized by elevated levels of in-
flammatory biomarkers such as cytokines (e.g., IL-6, IL-
1B), C-reactive protein (CRP), and tumor necrosis factor-
alpha (TNF-a), which are associated with frailty, cognitive
decline, and mortality [10]. Unlike acute inflammation,
which serves as a protective response to injury or infec-
tion, chronic inflammation contributes to tissue damage,
impaired organ function, and susceptibility to disease [11].
A combination of immunosenescence (the decline in im-
mune function with age), cellular senescence (the process
by which cells lose the ability to divide), and environ-
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Figure 1.Gut dysbiosis and inflammaging. Aging, along with
multiple factors—including environmental influences, dietary changes,
oxidative stress, infections, and genetic susceptibility—contributes
to gut microbiota dysbiosis. This dysbiosis is characterized by a
reduction in beneficial bacteria and an overgrowth of pathobionts,
leading to decreased bioavailability of microbial metabolites with
immunoregulatory properties, such as short-chain fatty acids (SCFAs)
and secondary bile acids, thereby exacerbating gut barrier dysfunction.
Increased intestinal permeability results in elevated systemic levels
of lipopolysaccharides (LPS), which activate Toll-like receptor 4
(TLR4) and drive nuclear factor kappa B (NF-kB)-mediated chronic
inflammation. These alterations contribute to an increased risk of
neurodegenerative disorders, cardiovascular diseases (CVD), and non-
alcoholic fatty liver disease (NAFLD). Created by author using assets
from http://www.freepik.com/.

mental factors such as diet and lifestyle contribute to this
persistent inflammatory state [12].

The gut microbiota—a vast and dynamic community of
microorganisms residing in the gastrointestinal tract—
plays a pivotal role in maintaining immune homeostasis
and modulating systemic inflammation. Age-associated
changes in microbiota composition, such as reduced di-
versity, decreased beneficial species, and an increased
prevalence of pro-inflammatory microorganisms, lead to
dysbiosis. This imbalance is implicated in the exacerba-
tion of inflammaging through mechanisms like increased
gut permeability, translocation of microbial products, and
alterations in bioactive metabolites, such as short-chain
fatty acids (SCFAs) [12] as shown in Figure 1.
Age-related immune dysregulation further compounds
the issue, as the immune system undergoes characteristic
changes with advancing age. Inflammaging fosters sus-
ceptibility to metabolic, cardiovascular, and neurodegen-
erative diseases, while immunosenescence impairs the
immune system’s ability to respond to antigens, reducing
vaccine efficacy and increasing infection risk. These al-
terations, including reduced B cell diversity, thymic invo-
lution, and dysfunctional innate immune responses, high-
light the multifaceted impact of aging on immune function
[7,12].

In addition to its biomedical implications, aging and its as-
sociated inflammatory states have significant societal con-
sequences. The elderly, despite their wealth of knowledge
and generational insights, often face social isolation and
ageism, recognized as a global challenge by the WHO.
Ageism is linked to worsened physical and mental health,
increased loneliness, financial insecurity, and even prema-
ture death. Addressing the intersection of biological and
societal factors is crucial for achieving “healthy aging,”
encompassing both a disease-free lifespan and enhanced
quality of life through societal integration [13].

This article aims to elucidate the intricate relationship
between inflammaging and gut microbiota, focusing on
their roles in age-related diseases. Additionally, it explores
potential interventions targeting microbiota to mitigate
chronic inflammation and enhance both the healthspan
and societal integration of aging individuals.

Overview of inflammaging

Key features of inflammaging include elevated pro-
inflammatory cytokines like IL-6 and TNF-a, oxidative
stress driven by the accumulation of reactive oxygen spe-
cies (ROS), and immune dysregulation marked by declin-
ing adaptive immunity and heightened innate immune ac-
tivation [10]. Cellular senescence also plays a pivotal role,
as senescent cells adopt a pro-inflammatory phenotype
known as the senescence-associated secretory phenotype
(SASP), which perpetuates tissue dysfunction [14].

Interconnected sources of inflammaging

Inflammaging results from a complex interplay of various
biological processes. One key factor is the presence of se-
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nescent cells, which secrete inflammatory cytokines, che-
mokines, and proteases, thereby creating a pro-inflamma-
tory tissue environment [14]. Another contributing factor
is oxidative stress, where mitochondrial dysfunction leads
to the overproduction of reactive oxygen species (ROS),
promoting cellular damage and triggering inflammation
[2]. Age-related changes in the gut microbiota also play
a role in inflammaging, as dysbiosis increases microbial
translocation, which introduces lipopolysaccharides (LPS)
into the circulation, thereby activating inflammatory
pathways [15]. Additionally, immune system dysfunction
contributes to inflammaging through immunosenescence,
the decline in adaptive immune responses, coupled with
heightened activation of the innate immune system, both
of which foster chronic inflammation [14]. Finally, circu-
lating mitochondrial DNA (cmtDNA) and damage-asso-
ciated molecular patterns (DAMPs) act as inflammatory
triggers, further exacerbating the inflammatory response
[16]. Non-inflammatory contributors such as epigenetic
modifications (e.g., DNA methylation, histone alterations)
and molecular regulators like microRNAs and altered gly-
cosylation patterns also amplify inflammatory pathways
[17]. These interconnected mechanisms establish a self-
sustaining loop of chronic inflammation, underscoring the
role of inflammaging in driving age-associated dysfunc-
tion and disease.

Gut microbiota and aging

During early childhood, the diversity of the gut micro-
biota is characterized by the predominance of species
such as Akkermansia muciniphila, Bacteroides, Veillon-
ella, Clostridium coccoides, and Clostridium botulinum.
By around the age of three, the gut microbiota stabilizes
into a composition similar to that of adults, dominated
by three primary phyla: Firmicutes, Bacteroidetes, and
Actinobacteria [18]. As individuals age, changes in diet
and the immune system can significantly influence gut
microbiota composition. In older adults, there is often a
decline in Bifidobacterium and an increase in Clostridium
and Proteobacteria. The reduction in Bifidobacterium, an
anaerobic bacterium known for its role in immune system
stimulation, is associated with heightened inflammation
and a decline in overall gut health [19].

The human microbiota, a diverse community of microor-
ganisms residing in and on our body, plays an indispens-
able role in maintaining health. It influences a variety of
physiological functions, including metabolic regulation,
immune modulation, and barrier integrity. The gut micro-
biota produces SCFAs through the fermentation of dietary
fibers, which in turn regulate key metabolic pathways,
insulin sensitivity, and lipid metabolism. Among these,
butyrate serves as a primary energy source for the colonic
lining and exhibits potent anti-inflammatory and antican-
cer effects, contributing to overall gut and systemic health
[20].

The gut microbiota also plays a crucial role in shaping
adaptive immune responses, particularly in the develop-
ment and differentiation of CD4" and CD8" T cells. For
instance, Lactobacillus species stimulate and activate

regulatory T cells (Tregs), while Clostridium perfringens
(Gram-positive) supports the proliferation and differentia-
tion of both Tregs and Th17 cells. This interaction pro-
motes the production of interleukin-17 (IL-17) by intesti-
nal Th17 cells, highlighting the microbiota’s influence on
immune modulation [21].

Mechanisms linking microbiota and inflam-
maging

Inflammaging, is a hallmark of aging and is influenced by
the gut microbiota. The activation of Toll-like receptors
(TLRs), particularly TLR4, is a key player in this process.
TLRs are type 1 transmembrane proteins found on epithe-
lial and lamina propria cells, playing a pivotal role in the
innate immune system. These receptors enable host cells
to identify and respond to microbial pathogens by recog-
nizing a diverse array of pathogen-associated molecular
patterns (PAMPs) and DAMP [22].

In humans, ten TLRs have been identified, categorized
based on their cellular localization. TLRs 1, 2, 4, 5, 6, and
10 are positioned on the cell surface and are primarily
responsible for detecting extracellular pathogens. In con-
trast, TLRs 3, 7, 8, and 9 are intracellularly located, where
they specialize in recognizing viral particles and other nu-
cleic acid-based signatures. This division underscores the
specialized roles of TLRs in mounting effective immune
responses against diverse microbial threats [23].

TLR signaling pathways are categorized into two types:
MyD88-dependent and MyD88-independent (TRIF-
mediated) pathways. All TLRs, except for TLR3, utilize
the MyD88-dependent pathway. TLR3 exclusively signals
via the TRIF pathway, while TLR4 uniquely employs
both MyD88 and TRIF pathways. Upon activation, TLRs
recruit adaptor proteins such as MyD88, initiating down-
stream signaling cascades. This leads to the activation of
transcription factors like nuclear factor-kappaB (NF-«kB),
interferon regulatory factors (IRF3 and IRF7), and mi-
togen-activated protein kinases (MAPKs). These factors
drive the production of inflammatory cytokines, facilitat-
ing inflammation, immune regulation, cell survival, prolif-
eration, and even cancer development. TLR4 exemplifies
this dual pathway mechanism, engaging both TRIF and
MyD88 adaptors to orchestrate a comprehensive immune
response [24].

These signaling cascades underscore the complexity of
TLR-mediated immune responses, linking innate immu-
nity to broader physiological and pathological processes.
TLR4 receptors recognize bacterial components like lipo-
polysaccharides (LPS), and when the gut barrier is com-
promised due to dysbiosis, these microbial products can
enter the bloodstream, triggering systemic inflammation
[25] as shown in Table 1.

LPS, a major component of Gram-negative bacterial cell
walls, serve as potent inducers of inflammatory responses.
Acting through TLRs and the NF-«xB signaling pathway,
LPS triggers the production of inflammatory mediators
and activates the innate immune system [26]. The gut
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microbiota is a primary source of LPS. Under normal cir-
cumstances, a functional intestinal barrier prevents harm
by maintaining low circulating levels of LPS, as observed
in healthy individuals [27, 28].

However, in pathological conditions, the intestinal barrier
may lose its integrity, leading to increased permeability
and heightened translocation of LPS produced by gut
bacteria into the bloodstream. Historically, a leaky gut
was thought to arise solely as a consequence of specific
diseases. Recent studies, however, suggest that increased
intestinal permeability may play a causative role in the de-
velopment of certain pathological conditions, rather than
being merely a secondary effect [29]. This paradigm shift
highlights the importance of intestinal barrier integrity in
maintaining systemic health.

Elevated levels of circulating LPS and pro-inflammatory
cytokines (such as IL-6 and TNF-a) serve as biomarkers
for inflammaging. Monitoring these biomarkers can help
clinicians evaluate the inflammatory status of elderly pa-
tients and guide interventions, such as the use of omega-3
fatty acids or curcumin, which have anti-inflammatory
properties. Restoring gut barrier integrity through dietary
interventions or probiotics (e.g., Lactobacillus plantarum
or Akkermansia muciniphila) may help reduce systemic
inflammation in aging populations [30].

Increasing SCFA production through dietary fiber supple-
mentation or the use of specific probiotics is being stud-
ied as a clinical strategy to reduce chronic inflammation.
High-fiber diets and SCFA-producing probiotics have
demonstrated benefits in treating inflammatory condi-
tions like ulcerative colitis, in experimental model [31].
Abdin AA et al. evaluated Lactobacillus acidophilus in an

oxazolone-induced colitis model in rats. Results showed
significant reductions in inflammatory markers (CRP,
TNF-a, IL-6) and disease activity index (DAI) with L.
acidophilus alone or combined with olsalazine, with the
combination proving most effective [31]. These findings
suggest L. acidophilus as a promising adjunct therapy for
UC, warranting further clinical validation in humans. In-
terventions that enhance SCFA production, such as the use
of butyrate-producing bacterial strains or dietary fibers,
may help restore gut barrier function and reduce microbial
translocation, further reducing systemic inflammation
[32]. Probiotics like Akkermansia muciniphila, which
enhance mucosal barrier function, are being evaluated for
their potential to prevent gut barrier dysfunction, reduce
microbial translocation, and lower systemic inflammation
in the elderly [33]. Experimental studies have shown that
Akkermansia muciniphila treatment alleviates mucosal
inflammation by enhancing gut barrier function, reducing
inflammatory cytokines, and improving microbial com-
munity balance [34, 35]. These findings highlight A. mu-
ciniphila as a promising probiotic candidate for managing
colitis.

Gut dysbiosis and its role in age-associated dis-
eases

Gut dysbiosis, the imbalance of the gut microbiota, is a
contributing factor in age-related diseases such as meta-
bolic syndrome, cardiovascular diseases, and cancer [36].
Elderly individuals often show a reduction in beneficial
bacteria like Bifidobacteria and Lactobacilli, while harm-

Table 1. Overview of TLR activation, signaling pathways, and gut modulation in inflammaging.

1.TLR activation and localization

Surface TLRs (e.g., TLR4, TLRS)
Intracellular TLRs (e.g., TLR3, TLR7)

Detect extracellular microbial components, such as LPS from gram-negative bacteria.

Recognize viral nucleic acids and intracellular microbial products.

2. Key pathways in TLR signaling

a. MyD88-dependent pathway

Step 1: R t tivati L
°p ceeptor activation stabilize the complex.

Step 2: Downstream signaling cascade

TLRs recruit MyD88 adaptor protein via Toll/IL-1 receptor (TIR) domains. MyD88 recruits TIRAP to

Activation of IRAK family kinases (e.g., IRAK4 phosphorylates IRAK1). TRAF6 (TNF receptor-
associated factor 6) is recruited and facilitates K63-linked polyubiquitination.

TAK1 phosphorylates the IKK complex (IKKo, IKKB, NEMO). IxBa degradation releases NF-«xB,
Step 3: Activation of NF-kB and MAPKs  which translocates to the nucleus to induce cytokines (IL-6, TNF-a, IL-1B). MAPKs (ERK, JNK, p38)

amplify responses.
b. TRIF-dependent pathway

Step 1: Adaptor recruitment

Step 2: Downstream activation

For TLR4, LPS activation triggers MyD88-dependent signaling first. TRIF is later recruited via TRAM.

TRIF interacts with TRAF3 to activate TBK1 and IKKe, which phosphorylate IRF3. IRF3 induces Type
I interferons (e.g., IFN-B). TRIF also links to NF-«xB activation via TRAF6.

3. Gut modulation and its impact on TLR signaling

LPS inflammation.

Role of SCFAs (e.g., Butyrate) inflammatory cytokines.

Probiotics and prebiotics

Dysbiosis increases circulating LPS, activating TLR4 and driving chronic NF-kB-mediated

SCFAs stabilize IkBa, inhibiting NF-kB activation. Promote Treg cell differentiation, reducing pro-

Akkermansia muciniphila and Lactobacillus plantarum improve mucosal integrity, reducing LPS
translocation and systemic inflammation. Dietary fibers enhance SCFA production.
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ful bacteria like Enterobacteriaceae are more prevalent
[36]. This phenomenon extends to various dietary com-
ponents, such as non-digestible carbohydrates and dietary
proteins that reach the colon. These substances can sig-
nificantly influence bacterial composition and the micro-
bial production of SCFAs alongside potentially harmful
metabolites like hydrogen sulfide (H,S), p-cresol, phenol,
and ammonia (NH,). Non-absorbed dietary iron, includ-
ing iron supplements, also impacts the microbiota, while
dietary phenolic compounds may serve as prebiotics [37].
The effects of dietary lipids on the gut microbiota remain
poorly understood; however, animal studies have shown
that high-fat diets (exceeding physiological norms) can
induce gut dysbiosis.

Interestingly, research by Hildebrandt et al. demonstrated
that rats fed a high-fat diet developed gut dysbiosis in-
dependently of their obese phenotype. Significant altera-
tions in gut microbiota were observed following a switch
to a high-fat diet, including a reduction in Bacteroidetes
and an increase in both Firmicutes and Proteobacteria.
These changes were consistent across different genotypes,
regardless of the presence or absence of obesity. This
suggests that the high-fat diet itself, rather than the obese
state, is primarily responsible for the observed shifts in
gut microbial composition [38].

Food additives, such as low-calorie sweeteners and emul-
sifiers, have been shown to disrupt the gut microbiota,
increasing its potential virulence and contributing to meta-
bolic disorders in both animals and humans [39]. Non-
caloric artificial sweeteners (NAS) have been shown to
contribute to glucose intolerance by inducing significant
compositional and functional changes in the intestinal mi-
crobiota. These adverse metabolic effects driven by NAS
consumption can be reversed through antibiotic treatment
and are fully transferable to germ-free mice via fecal
microbiota transplantation from NAS-consuming mice
or microbiota anaerobically incubated with NAS. Micro-
bial metabolic pathways altered by NAS correlates with
increased host susceptibility to metabolic diseases [40].
In mice, low concentrations of commonly used emulsi-
fiers, carboxymethylcellulose and polysorbate-80, were
found to induce low-grade inflammation and metabolic
syndrome, as well as exacerbate colitis in genetically pre-
disposed hosts [41]. These effects were linked to micro-
biota alterations, including encroachment on the intestinal
mucosa, changes in species composition, and heightened
pro-inflammatory activity. Chaissang B ef al., using germ-
free mice and fecal transplants demonstrated that these
microbiota alterations were both necessary and sufficient
to trigger inflammation and metabolic syndrome [41].

The gut microbiota are highly responsive to external influ-
ences, including drugs, diet, and environmental pollutants.
Factors such as antibiotics, heavy metals, persistent organ-
ic pollutants, pesticides, nanomaterials, and food additives
can significantly alter the composition and functionality
of the gut microbial community, potentially disrupting its
balance and contributing to health disorders [42].

The key factors influencing these shifts in microbial com-
position and diversity during aging, the mechanisms in-

volved, and their potential impacts are depicted in Table 2.

Cardiovascular disease

Intestinal bacteria generate various bioactive metabolites,
which can be absorbed into the enterohepatic circulation
and subsequently enter the systemic circulation, thereby
influencing host physiology either directly or indirectly
[43]. Trimethylamine N-oxide (TMAO) produced by the
microbial metabolism of dietary choline and carnitine, has
been linked to an increased risk of cardiovascular diseases
(CVDs) like atherosclerosis, myocardial infarction, and
stroke [44]. Elevated TMAO levels promote endothelial
dysfunction and atherosclerotic plaque formation, contrib-
uting to the development of these conditions. TMAO is
also implicated in increased all-cause mortality [45].
Dietary nutrient exposure influences host physiology
through both metabolism-dependent and metabolism-
independent mechanisms mediated by the gut microbiota.
Metabolism-dependent pathways include: (1) microbial
fermentation of dietary carbohydrates to produce SCFAs,
which enhance host energy expenditure, inhibit histone
deacetylase (HDAC) activity, and activate G-protein-cou-
pled receptor (GPCR) signaling; (2) microbial conversion
of primary bile acids into secondary bile acids, promoting
brown adipose tissue (BAT) activation, energy expendi-
ture, insulin sensitivity, and reduced inflammation; and (3)
microbial transformation of choline and L-carnitine into
trimethylamine (TMA), which the host flavin monooxy-
genase (FMO) system converts to TMAO, a compound
linked to heightened CVD risk through altered cholesterol
transport and macrophage activation [46].
Metabolism-independent effects arise from gut hyperper-
meability, enabling translocation of bacterial components
such as LPS and peptidoglycans into the bloodstream.
These circulating microbial-derived molecules activate
macrophages, contributing to impaired reverse cholesterol
transport, insulin resistance, hyperlipidemia, and vascular
inflammation. Together, the metabolism-dependent and
independent actions of the gut microbiota form a complex
endocrine network that modulates the risk of atheroscle-
rotic CVD, including myocardial infarction, stroke, and
associated mortality [46].

Recent clinical research has focused on leveraging the mi-
crobiome to assess cardiovascular risk. TMAO is emerg-
ing as a valuable biomarker that could help clinicians
identify individuals at higher risk of developing CVDs
[47, 48]. When combined with other markers viz., car-
nitine, creatinine, choline and betaine TMAO levels can
aid in the early detection and prognosis of cardiovascular
diseases [48]. Additionally, interventions targeting the gut
microbiota, such as dietary modifications and the use of
specific probiotics, have shown promise in reducing the
production of TMAO and improving lipid profiles [49].
Dietary polyphenols can modulate the gut microbiota,
influencing host metabolism through their interaction
with microbial communities. The gut microbiota, in turn,
metabolizes polyphenols into bioactive, low-molecular-
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weight phenolic compounds that contribute to the host’s
regulatory and metabolic pathways. These compounds
play a significant role in shaping the composition and
functionality of the intestinal microbiota. Polyphenols
selectively promote the growth of beneficial microorgan-
isms, such as Lactobacillus and Bifidobacterium, which
have the potential to ameliorate inflammation [50].

In a study by Koeth RA et al. the potential of gut micro-
bial modulation as a strategy to reduce TMAO produc-
tion, thereby mitigating CVD risk was highlighted. The
research revealed that individuals with a gut microbiota
dominated by Prevotella exhibited higher circulating
TMAO levels compared to those with a Bacteroides-
enriched enterotype. Furthermore, omnivorous partici-
pants with elevated plasma TMAO concentrations had
an increased abundance of Peptostreptococcaceae and
Clostridium and a reduced prevalence of Lachnospira
compared to vegan or vegetarian individuals, who demon-
strated lower TMAO levels [51]. Moreover, postbiotics,
which are metabolites produced by probiotics, are being
explored as an innovative therapeutic strategy for modu-
lating cardiovascular inflammation, with promising results
emerging from early clinical trials [52].

Neurodegenerative diseases: Alzheimer’s and
Parkinson’s

Microbial dysbiosis not only contributes to systemic in-
flammation, but also affects the brain through the gut-brain
axis. This communication pathway links the gut micro-
biota with the central nervous system (CNS), influencing
neuroinflammation, cognitive function, and the progres-
sion of neurodegenerative diseases like Alzheimer’s and
Parkinson’s. Alterations in gut microbiota composition
can activate microglia, the brain’s immune cells, contrib-
uting to neuroinflammation and cognitive decline [53].
Dysbiosis—the imbalance of the gut microbiota—along
with increased gut permeability, contributes to systemic
inflammation and neuroinflammation, two key drivers of
neurodegenerative disease progression. This connection is
further complicated by the gut-brain axis, a bidirectional
communication system linking the central nervous system
and the gastrointestinal tract [54].

The gut microbiota metabolize dietary elements such as
macronutrients, micronutrients, fiber, and polyphenols
into various bioactive compounds, including short-chain
fatty acids, trimethylamines, amino acid derivatives, and
vitamins. These metabolites, along with the dietary com-
ponents, play critical roles in metabolic and signaling
processes, influencing host homeostasis, including the in-
tegrity of the blood-brain barrier (BBB) and overall brain
function [55]. SCFAs can influence brain neurotransmis-
sion by regulating the expression and functionality of
neurotransmitters and their receptors. Among SCFAs,
butyrate is particularly noteworthy for its significant im-
pact on neuronal activity. It has been shown to modulate
key neurotransmitters such as glutamate, the brain’s pri-
mary excitatory neurotransmitter involved in synaptic

plasticity and memory, and GABA, the principal inhibi-
tory neurotransmitter that maintains the balance between
neuronal excitation and inhibition [56]. Butyrate’s effects
on the glutamatergic system include regulating glutamate
receptor expression and neurotransmitter release, thereby
influencing neuronal excitability and synaptic signaling
[57]. Similarly, its role in GABA-mediated transmission
underscores its importance in neural stability and cogni-
tive function.

Furthermore, butyrate inhibits HDACs, promoting his-
tone acetylation, which relaxes chromatin structure and
enhances gene transcription, including the upregulation
of brain-derived neurotrophic factor (BDNF). Increased
BDNF expression supports neurogenesis, the generation
of new neurons from neural stem cells, and enhances
synaptic plasticity [58, 59]. These processes contribute
to improved learning and memory capabilities and offer
promising therapeutic potential for addressing neurode-
generative disorders.

Preclinical studies have shown that gut dysbiosis can ac-
celerate beta-amyloid deposition in the brain and worsen
cognitive impairment in Alzheimer’s disease (AD) [60,
61]. Guillemin GJ et al. explored the impact of quinolinic
acid, a tryptophan-derived metabolite, on AD. The results
revealed that elevated levels of quinolinic acid exacer-
bated neuroinflammation by increasing microglial activa-
tion and astrogliosis, hallmarks of brain inflammation [61].
This study highlights quinolinic acid as a key factor in AD
progression and underscores its potential as a target for
therapeutic intervention.

Probiotic treatment in mice has been shown to enhance
spatial memory and reduce hippocampal plaque accu-
mulation [62]. Supplementation also improved synaptic
plasticity and restored long-term potentiation in amyloid-
beta (AP)-treated mice [63]. Interventions targeting the
gut microbiota, such as prebiotics and probiotics, may
improve cognitive function and slow the progression of
neurodegenerative diseases in older adults [64]. In hu-
mans, a clinical trial reported that probiotics improved
cognitive function in Alzheimer’s disease (AD) patients
and positively influenced plasma biomarkers, including
malondialdehyde and serum triglycerides [65].

Patients with Parkinson’s disease (PD) often experience
intestinal dysbiosis, marked by a decrease in SCFA-
producing bacteria and an increase in proinflammatory
microbial species [66]. This imbalance can disrupt the
production of metabolites that regulate inflammation both
systemically and in the brain. A reduction in butyrate lev-
els may play a role in the chronic activation of microglia,
a hallmark of PD pathology that contributes to neurode-
generation. This sustained microglial activation is thought
to aggravate neuronal damage, accelerating disease pro-
gression [67].

Chang et al. investigated metabolic profile changes, fo-
cusing on kynurenine metabolism in the plasma of PD
patients. Their findings suggest that these metabolic al-
terations may influence disease progression by modulating
neuroinflammatory pathways [68]. Shao ef al. highlighted
advancements in metabolomics, emphasizing that pre-
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clinical studies have revealed notable alterations in me-
tabolites such as lactate and SCFAs. These metabolites are
of particular interest due to their potential contribution to
mitochondrial dysfunction and neuroinflammation, both
key features of PD [69].

In clinical settings, therapeutic modulation of the gut-
brain axis is gaining traction as a potential strategy for
managing neurodegenerative diseases. Clinical trial inves-
tigating the use of probiotics supplementation containing:
Bifidobacterium bifidum, Lactobacillus casei, Lactobacil-
lus fermentum, and Lactobacillus acidophilus have shown
potential in slowing cognitive decline in patients with
mild cognitive impairment, a precursor to AD, suggesting
that gut microbiota modulation could delay AD progres-
sion [65]. Similarly, analysis of mucosal and stool samples
from individuals with PD revealed significant down-reg-
ulation of several genes in the stool microbiota, alongside
substantial alterations in microbial composition. Specifi-
cally, an increase in bacteria such as Proteobacteria,
Betaproteobacteria, Coprococcus, Blautia, Akkermansia,
Oscillospira, Roseburia, and Bacteroides was observed.
Conversely, there was a notable decrease in beneficial
bacterial groups like Faecalibacterium, Firmicutes, and
members of the class Clostridia. These microbial imbal-
ances may play a role in PD pathophysiology, potentially
influencing gut-brain signaling and contributing to disease
progression [70].

Metabolic disorders

The gut microbiota plays a crucial role in regulating me-
tabolism, and dysbiosis has been implicated in several
metabolic disorders, including type 2 diabetes mellitus
(T2DM), non-alcoholic fatty liver disease (NAFLD),
and obesity [71]. One of the key mechanisms by which
the microbiota influences metabolic health is through the
process of metabolic endotoxemia [72]. This occurs when
microbial products such as LPS translocate from the gut
into the bloodstream, triggering chronic low-grade inflam-
mation and insulin resistance.

In clinical practice, microbiota-based therapies are being
explored as adjuncts to conventional treatments for meta-
bolic disorders. Several studies explored multi-strain pro-
biotic formulations, such as Sabico et al, which showed
significant improvements in HOMA-IR after 6 months
of probiotic supplementation [73]. Other studies, such as
Mafi et al., who utilized Lactobacillus, Bifidobacterium
and Streptococcus and, Razmpoosh et al., using Lactoba-
cillus with Bifidobacterium reported improvements in car-
diometabolic risk factors and fasting plasma glucose [74,
75]. Perraudeau et al., noted that a five-strain probiotic
formulation reduced postprandial glucose levels but did
not significantly affect weight or HOMA-IR [76]. Jiang et
al., found that probiotic supplementation improved glyce-
mic control in T2DM patients with diabetic nephropathy,
underlining the potential of probiotics in managing diabe-
tes-related complications [77]. In another study, Toejing et
al., found that Lactobacillus paracasei HII01 supplemen-

tation reduced inflammatory markers and hyperglycemia,
potentially by modulating the gut microbiota and treating
endotoxemia, which suggests a promising role as an ad-
junctive therapy [78]. Kumar et al., explored the impact
of probiotics as an adjunct therapy to metformin, finding
reductions in fasting blood glucose (FBG), postprandial
glucose, and HbAlc levels compared to metformin alone,
although the overall efficacy of probiotics in this combi-
nation treatment was not strongly substantiated [79].
Other studies also assessed the effects of different probi-
otic strains, with varying results. Chen et al., reported that
the combination of metformin with a blend of multiple
probiotics resulted in a more pronounced hypoglycemic
effect, likely through modulation of the gut microbiota
and bile acid metabolism [80]. Hasanpour et al. highlight-
ed that a combination of soymilk and probiotics improved
cardiovascular risk factors in T2DM patients, though no
significant effects were observed on FBG or HOMA-IR
[81].

Microbiota modulation as a strategy to combat
inflammaging

The gut microbiota represents a promising therapeutic
target for mitigating inflammaging, as its composition and
functionality profoundly influence host immune responses
and metabolic health. Several microbiota modulation
strategies, including dietary interventions, probiotics, pre-
biotics, synbiotics, and fecal microbiota transplantation
(FMT), have been explored for their potential to combat
inflammaging. Below, we discuss these strategies and
their underlying mechanisms.

Dietary interventions

Dietary fibers, primarily composed of non-digestible
carbohydrates, significantly influence the gut microbiota
by serving as substrates for microbial fermentation. The
molecular mechanisms underlying the beneficial effects
of high-fiber diets on gut microbiota composition and sys-
temic inflammation involve several interconnected path-
ways [82, 83].

Dietary fiber, though resistant to digestion in the upper
gastrointestinal tract, undergoes fermentation in the colon
by specific bacterial taxa, such as Bifidobacterium and
Lactobacillus species. These microbes possess specialized
enzymes, including glycoside hydrolases and polysac-
charide lyases, which break down complex carbohydrates
into fermentable monosaccharides. This process yields
SCFAs, including acetate, propionate, and butyrate, which
play pivotal roles in maintaining gut health and modulat-
ing inflammation. These commensal microbes compete
with pathogenic species through mechanisms like antimi-
crobial peptide production and acidification of the colonic
environment via lactic acid and SCFA production [84].
The immune system also benefits significantly from fiber-
rich diets. SCFA-mediated signaling suppresses systemic
inflammation by reducing the levels of pro-inflammatory
cytokines like interleukin-6 (IL-6) and tumor necrosis
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factor-alpha (TNF-a). These effects are achieved through
inhibition of inflammatory transcription factors such as
NF-kB in immune cells. SCFAs also serve as epigenetic
regulators, modulating histone acetylation and methyla-
tion patterns to influence the transcription of genes in-
volved in inflammatory responses [46, 58]. High-fiber
diets affect microbial tryptophan metabolism, leading to
the production of indole derivatives that activate the aryl
hydrocarbon receptor (AhR). This receptor plays a crucial
role in modulating intestinal immunity and inflammation,
highlighting the broader implications of fiber fermentation
in systemic health [85].

Enhanced microbial production of butyrate has also been
linked to improved insulin sensitivity and lipid metabo-
lism, highlighting its potential in mitigating systemic
metabolic dysfunction [80]. These interconnected mecha-
nisms underscore the critical role of dietary fiber and its
fermentation products in maintaining overall health and
preventing disease.

Probiotics

Probiotic supplementation, particularly with specific
strains such as Lactobacillus rhamnosus, Lactobacillus
casei, and Bifidobacterium longum, has gained promi-
nence as a therapeutic strategy for modulating gut micro-
biota composition and alleviating inflammation in aging
populations. These effects are mediated through intricate
molecular mechanisms involving immune modulation,
enhancement of the intestinal barrier, and alterations in
microbial metabolite production.

Immune modulation by probiotic strains

Probiotic strains play a critical role in modulating the
immune system by interacting with the gut-associated
lymphoid tissue (GALT) and influencing both innate and
adaptive immune responses. This interaction is mediated
through specific molecular pathways, including pattern
recognition receptors (PRRs). Probiotics, such as Lacto-
bacillus rhamnosus, engage TLRs and NOD-like receptors
(NLRs) on intestinal epithelial and immune cells [86]. For
instance, binding to TLR-2 triggers MyD88-dependent

Table 3. The synergistic mechanism of action and outcomes of synbiotics.

NF-«B signaling pathways, resulting in the controlled
production of anti-inflammatory cytokines like IL-10,
while suppressing pro-inflammatory cytokines such as
IL-6 and TNF-a. Additionally, probiotics influence den-
dritic cells by inducing tolerogenic phenotypes, which, in
turn, promote the differentiation of Tregs. Tregs contribute
to immune homeostasis by secreting anti-inflammatory
mediators, including IL-10 and TGF-, thereby reducing
chronic inflammation, a hallmark of aging [86].

Enhancement of intestinal barrier function

Probiotic strains also strengthen the integrity of the intes-
tinal barrier, which tends to weaken with age, leading to
increased systemic inflammation [87]. One mechanism
involves the upregulation of tight junction proteins, such
as occludin, claudin, and zonula occludens-1 (ZO-1) [84].
For example, Bifidobacterium longum enhances ZO-1
expression via the PI3K/Akt signaling pathway, thereby
decreasing epithelial permeability and preventing the
translocation of endotoxins [88]. Furthermore, probiot-
ics stimulate goblet cells to increase mucin production,
particularly MUC2, which enhances the protective mucus
layer on the epithelial surface and limits microbial inva-
sion. By fortifying the gut barrier, probiotics reduce endo-
toxemia by minimizing lipopolysaccharide (LPS) trans-
location, which otherwise triggers systemic inflammation
through TLR-4 signaling [84].

Microbial metabolite modulation

Probiotics contribute to the production of beneficial mi-
crobial metabolites with anti-inflammatory properties.
Notably, they enhance the generation of SCFAs such as
acetate, propionate, and butyrate by fostering the growth
of SCFA-producing bacteria. These SCFAs act as ligands
for G-protein-coupled receptors, including GPR43 and
GPR109A, which inhibit NF-xB signaling and suppress
the release of pro-inflammatory cytokines [46, 58, 59].
Additionally, probiotics influence tryptophan metabolism,
leading to the formation of indole derivatives that activate
the aryl hydrocarbon receptor (AhR) pathway. This acti-
vation supports mucosal homeostasis and reduces inflam-

Mechanism Key actions

Outcomes

Enhanced growth and
activity of beneficial
bacteria

Lactobacillus and Bifidobacterium.

« Prebiotics (inulin, FOS, GOS) selectively fuel probiotic strains like

Impaired protein folding, decreased chaperone
function (HSP70, HSP90), and defective

» Amplifies metabolic activity of probiotics, increasing SCFA production.  autophagy.

* Probiotics secrete antimicrobial peptides and regulate tight junction
proteins (e.g., occludin, claudin).

« Prebiotics enhance the mucus layer by stimulating goblet cells for mucin
production.

Improved gut barrier
integrity

Decreased chaperone activity, proteasome
dysfunction and reduced autophagic activity.

* Downregulates NF-kB signaling, reducing pro-inflammatory cytokines
(e.g., TNF-qa, IL-6).

* SCFAs act as HDAC inhibitors, promoting anti-inflammatory epigenetic
changes.

Impaired protein quality control (UPS and
autophagy), reduced mitochondrial function,
and accumulation of protein aggregates.

Anti-inflammatory
effects

 Enhances insulin sensitivity and lipid metabolism via SCFA-mediated
GPR activation.

» Reduces endotoxemia and LPS-induced inflammation by improving gut
permeability.

Modulation of
metabolic pathways

Improves glycemic control, lipid profiles, and
metabolic health.
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mation [85].
Prebiotics

Prebiotics, such as inulin, fructooligosaccharides (FOS),
and galactooligosaccharides (GOS), are non-digestible
food components that selectively stimulate the growth
and activity of beneficial gut microbiota, including Bifido-
bacterium and Lactobacillus species. Their fermentation
in the colon yields metabolites like SCFAs, which exert
both local and systemic effects that contribute to anti-
inflammatory and metabolic benefits. These mechanisms
make prebiotics a promising intervention for addressing
dysbiosis and chronic low-grade inflammation associated
with aging, known as inflammaging [84].

Synbiotics

Synbiotics combine prebiotics and probiotics to provide
synergistic benefits. This approach not only stimulates the
growth of beneficial bacteria but also enhances their activ-
ity and survival in the gastrointestinal tract. Synbiotics
also exhibit potential in reducing gut permeability, a hall-
mark of chronic inflammation associated with aging [84,
89]. The synergistic mechanism of action and outcomes of
synbiotics is shown in Table 3.

Fecal microbiota transplantation (FMT)

FMT is an innovative therapeutic approach involving the
transfer of stool from a healthy donor to a recipient to re-
store microbial diversity and functionality in the gut. This
method, initially established for its efficacy in treating
Clostridioides difficile infections, is now gaining traction
as a potential intervention to mitigate inflammaging [89].
In the context of aging, where dysbiosis is often driven by
dietary alterations, medication use, and age-related physi-
ological changes, FMT offers a promising avenue for re-
establishing microbial homeostasis and alleviating its
downstream effects on health.

The primary mechanism underlying the benefits of FMT
lies in its ability to restore microbial diversity. Aging is
frequently accompanied by a decline in beneficial gut mi-
crobial populations, such as Bifidobacterium and Faecali-
bacterium, coupled with an overgrowth of pro-inflamma-
tory species. The reintroduction of a balanced microbial
community through FMT promotes ecological stability
and re-establishes a functional microbiota capable of sup-
porting host health. This restoration is particularly crucial
in aging populations, where microbial diversity is a deter-
minant of gut and systemic health [89].

Another critical benefit of FMT is its ability to enhance
gut barrier integrity. The introduction of beneficial bac-
teria through FMT stimulates the production of SCFAs,
such as butyrate, which strengthen intestinal tight junc-
tions and enhance mucus production. Improved gut barrier
function reduces intestinal permeability, a phenomenon
that often leads to endotoxin translocation and systemic
inflammation in aging populations. By reinforcing gut
barrier integrity, FMT helps mitigate the cycle of dysbio-
sis, inflammation, and metabolic disruption [90].

By reinstating beneficial bacteria, FMT suppresses the

overgrowth of pathogenic microbes that release inflamma-
tory triggers like LPS. These transferred microbes modu-
late inflammatory pathways, particularly by downregulat-
ing NF-«xB signaling, thereby reducing the production of
pro-inflammatory cytokines such as TNF-a and IL-6. The
resulting anti-inflammatory effects are crucial for mitigat-
ing chronic low-grade inflammation that contributes to
age-associated diseases [89, 91].

Moreover, FMT has shown promise in modulating the gut-
liver axis, a critical interface affected by dysbiosis in ag-
ing. Dysbiosis disrupts bile acid metabolism, exacerbating
systemic inflammation and metabolic disturbances. FMT
restores the balance of bile acid-metabolizing bacteria,
thereby regulating bile acid signaling pathways involved
in lipid metabolism and inflammatory responses. This
modulation of the gut-liver axis is particularly relevant for
addressing metabolic disorders commonly associated with
aging [91].

Emerging evidence also suggests that FMT has beneficial
effects on the gut-brain axis, which is intricately linked to
aging and neuroinflammation. Dysbiosis in the elderly has
been associated with cognitive decline and neurodegen-
erative diseases such as Alzheimer’s and Parkinson’s. By
influencing microbial composition and reducing systemic
inflammation, FMT may help mitigate neuroinflammation
and improve cognitive outcomes in these populations [89].
FMT represents a promising therapeutic strategy to ad-
dress the systemic inflammation, metabolic disturbances,
and cognitive decline associated with aging. While exist-
ing evidence is encouraging, further research is essential
to refine treatment protocols, optimize donor selection,
and ensure long-term safety and efficacy. These advance-
ments could pave the way for the broader application of
FMT in addressing the challenges posed by inflammaging.

Conclusions

The relationship between microbiota and inflammaging
is a rapidly evolving field with significant clinical impli-
cations. Microbiota-targeted interventions could reduce
inflammation, improve metabolic health, and promote lon-
gevity. Integrating microbiome profiling into clinical prac-
tice will enable personalized treatments that address the
underlying causes of inflammaging and related diseases.
The convergence of microbiota science and aging research
holds promise for enhancing immune function and reduc-
ing chronic disease burdens in older adults. Aging is often
associated with microbial dysbiosis, linked to diseases
like obesity, metabolic syndrome, cardiovascular disease,
and neurodegeneration. Dysbiosis contributes to meta-
bolic disturbances, insulin resistance, and cardiovascular
risk through inflammation and harmful microbial metabo-
lites such as TMAOQO. Restoring microbial balance through
diet or probiotics shows promise in improving metabolic
health and reducing cardiovascular risk. Furthermore,
therapies like FMT are being explored for neurodegenera-
tive diseases, aiming to restore microbial balance, reduce
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neuroinflammation, and slow disease progression in aging
individuals.
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