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Abstract
Background: Alzheimer’s disease (AD) is a major global health concern, characterized by the accumulation of 
abnormal protein aggregates that cause cognitive decline. This study explores bioactive compounds from tra-
ditional medicinal plants as potential therapeutic candidates for AD treatment.  
Methods: A total of 39 phytochemicals from Withania somnifera, Bacopa monnieri, Centella asiatica, and Cro-
cus sativus were investigated for their binding potential with AD-related enzymes, Acetylcholinesterase (AChE, 
PDB ID: 1B41) and β-Secretase (BACE-1, PDB ID: 1TQF), using molecular docking and molecular dynamics 
simulations. These compounds were further evaluated for drug-likeness and toxicity prediction. 
Results: Retinoic acid (-9.2 kcal/mol) and Somniferine (-8.8 kcal/mol) demonstrated strong binding affinities 
with the target enzymes, as confirmed by molecular docking. Molecular dynamics simulations further vali-
dated the stability of these interactions. Additionally, drug-likeness and toxicity assessments highlighted the 
therapeutic potential of these compounds. 
Conclusion: This study identifies Retinoic acid as a promising inhibitor of AChE and Somniferine as a novel in-
hibitor of BACE-1, suggesting their potential for treating Alzheimer’s disease. Further in-vivo studies and clini-
cal trials are recommended to confirm their efficacy and therapeutic application.
Keywords: Alzheimer’s disease, bioactive compounds, acetylcholinesterase, beta-secretase, molecular dock-
ing, molecular dynamics, toxicity
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Introduction

Alzheimer’s disease, a devastating neurodegenerative 
disorder, has emerged as a global healthcare challenge. 
At present, dementia affects more than 55 million people 

globally, with over 60% residing in low- and middle-
income nations. Each year, nearly 10 million new cases 
emerge. Alzheimer’s disease constitutes the most preva-
lent form of dementia, accounting for 60–70% of diagno-
ses [1]. The complex pathophysiology of Alzheimer’s dis-
ease is marked by the accumulation of abnormal protein 
aggregates in the brain, including beta-amyloid plaques [2] 
and tau fibrillary tangles [3, 4] which ultimately results in 
cognitive decline and memory impairment [5]. Alzheim-
er’s disease exhibits two neuropathies: Positive Lesions 
and Negative Lesions [6]. Positive Lesions, caused due to 
aggregation, include pathological changes like the forma-
tion of amyloid plaques and neurofibril tangles. Negative 
lesions, caused by deterioration, are characterized by large 
atrophy (shrinking of the brain) due to neural and synaptic 
losses [7, 8].
Plaques are the accumulation of beta-amyloid (Aβ) 
proteins [9] around the neurons. These Aβ deposits are 
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formed by the catalytic action of β-secretase (BACE-1) 
[10] and γ-secretase enzymes [11], causing the cleaving 
of transmembrane amyloid precursor proteins (APP) [12]. 
APPs on cleavage form multiple insoluble Aβ monomers 
or peptides, which are sticky and adhere to form plaques 
between the neurons [13]. This leads to an interruption 
of neuron-to-neuron signaling, amyloid angiopathy [14] 
and inflammation in the brain producing neurotoxic [15] 
effects and hence, cognitive impairments [16]. Neuro-
fibrillary tangles (NFTs) are the intracellular aggregation 
of abnormal, hyper-phosphorylated tau proteins [17]. 
Phosphate kinase gets activated due to a cascade of reac-
tions initiated by beta-amyloid plaques and transfers the 
phosphate group to tau proteins causing their misfold-
ing. Structurally altered tau proteins can no longer sup-
port microtubules and start forming tangles in the neuro-
cytoplasm, axons and dendrites. This alteration in neurons 
sends the signal for programmed cell death and nerve cells 
start undergoing apoptosis leading to the shrinkage of the 
brain [18]. The atrophy of brain cells causes memory loss, 
language impairment, loss of motor skills, and disorienta-
tion and ultimately makes the person bed-ridden leading 
to death [16, 19]. Despite significant research endeavors, 
the quest for effective therapies for Alzheimer’s disease 
continues to be challenging.
Inspiration from nature has prompted exploration into 
potential therapies for Alzheimer’s disease [20], leading 
to a focus on the neuroprotective medicinal plants Witha-
nia somnifera, Bacopa monnieri, Centella asiatica, and 
Crocus sativus [21]. These plants have a rich history of 
traditional use, with various parts of the plants believed 
to possess medicinal properties. Withania somnifera (also 
known as Ashwagandha), a member of Solanaceae family 
is known to possess neuroprotective [22, 23], hepatopro-
tective [24], anti-inflammatory, antioxidant [25] and anti-
depressant [26] properties. Bacopa monnieri (family: 
Scrophulariaceae) also called Brahmi, has been used for 
years as a brain-tonic in Ayurveda [27], known for treating 
various neurological disorders such as improving memory, 
thinking skills, insomnia, seizures, and anxiety [28]. It has 
also been studied for its therapeutic potential to treat or 
prevent neurodegenerative diseases like Alzheimer’s [29] 
and Parkinson’s disease [30]. Centella asiatica from Apia-
ceae family, is another medicinally important [31] plant 
with antioxidant [32], antimicrobial [33], anticancer [34], 
neuroceutical and cogniceutical properties [35, 36]. It is 
known to reduce oxidative stress, Aβ levels, and apopto-
sis, promotes dendritic growth and mitochondrial health, 
improve mood and memory [21]. Crocus sativus (Saffron), 
a member of the Iridaceae family has long been known to 
possess pharmacological properties [37] like antimicro-
bial, antioxidant [38], cytotoxic, neuroprotective [39] and 
antidepressant [40] properties. 
Computational biology approaches serve as invaluable 
resources in screening potential therapeutic agents for a 
particular disease target. Interactions between bioactive 
compounds found in the neuroprotective plants and key 
enzymes involved in Alzheimer’s disease pathology can 
be simulated and predicted virtually. Molecular docking 

[41] is an in-silico technique used to predict the preferred 
orientation and conformation of a small molecule (ligand) 
when bound to a target protein (receptor). By performing 
molecular docking studies, the interaction of natural bio-
active compounds with key enzymes involved in Alzheim-
er’s disease pathology, such as beta-amyloid protein and 
beta-secretase (BACE1) could be understood. Molecular 
dynamics (MD) [42] is a computational method used to 
simulate the movement and behavior of atoms and mol-
ecules over time. These simulations provide insights into 
the dynamic nature of protein-ligand interactions at the 
atomic level. By integrating ADMET prediction and drug-
likeness assessment into the drug discovery process, we 
can prioritize compounds with favorable pharmacokinetic 
and pharmacodynamic properties while minimizing the 
risk of toxicity and optimizing the likelihood of clinical 
success. This investigation aims to bridge the gap between 
traditional herbal knowledge and modern computational 
techniques by exploring the potential of natural bioactive 
compounds as novel candidates for Alzheimer’s disease 
therapy. 

Methods

Retrieval of ligands

The plants selected for the present study Withania som-
nifera, Bacopa monnieri, Centella asiatica, and Crocus 
sativus were chosen based on their traditional use as 
neuroprotective agents and documents efficacy in treat-
ing neurological disorders. An extensive literature review 
guided the selection of 39 phytochemicals, focusing on 
phytocompounds with diverse chemical classes, known 
pharmacological activities, and drug-like properties. The 
drug Donepezil [43] was chosen as a standard control. The 
3D-structures of selected ligands and drugs were retrieved 
from PubChem [44] database (https://pubchem.ncbi.nlm.
nih.gov/) in sdf file format. The compound structures were 
energy minimized using Chem-3D before docking studies. 
(Table 1)

Retrieval of target proteins and preparation

This investigation targets two major proteins related to 
Alzheimer’s disease, such as acetylcholinesterase (AChE) 
(PDB ID: 1B41) and β-secretase (BACE-1) (PDB ID: 
1TQF). The 3D structure of selected proteins were down-
loaded from RCSB Protein Data Bank (https://www.
rcsb.org/pdb/) [45] in pdb format (Figure 1). The enzyme 
AChE is responsible for hydrolysis of acetylcholine to 
acetic acid and choline. Acetylcholine is a crucial neu-
rotransmitter in the central nervous system playing a sig-
nificant role in brain signaling and cognitive functioning. 
A study in the 1970s revealed that patients of Alzheimer’s 
disease show a deficiency of Acetylcholine in the brain 
[46]. This leads to a cholinergic deficit, an inability to 
transmit neurological impulses across cholinergic syn-
apses, and a consequent cognitive decline [47]. AChE has 
additionally been implicated in the formation of plaque. 
AChE inhibitors serve as the most effective symptomatic 
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treatment for AD by slowing down the biochemical break-
down of acetylcholine, leading to prolonged neurotrans-
mission. It may also modify the deposition of β-amyloid 
[48]. 
BACE-1 enzyme is accountable for the aberrant degrada-
tion of APP [10], which play a role in neuronal growth 
and repair. The BACE-1 cleaves APP, resulting in the 
production of insoluble peptides that aggregate to form 

beta-amyloid plaques. The present investigation aims to 
examine the potential inhibitory effects of diverse bioac-
tive compounds on the BACE-1 enzyme. By specifically 
targeting BACE-1, the abnormal degradation of amyloid 
precursor protein (APP) and subsequent formation of 
plaque can be mitigated. 
Both the proteins were prepared before docking by the re-
moval of water molecules, heteroatoms, and extra ligands. 
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Medicinal plants Common name Family Compounds Compound ID

Withania somnifera Ashwagandha Solanaceae

Withanone 21679027

Somniferine 14106343

Withasomnine 442877

(-)-Anaferine 443143

Withaoxylactone 101687981

Withasomniferol A 101710595

Viscosalactone B 57403080

Withasomnilide 102066413

Physagulin-d 10100412

Bacopa monnieri Brahmi Scrophulariaceae

Bacoside A 92043183

Bacopasaponin A 101995276

Plantainoside D 9986606

Cucurbitacin A 5281315

Rosavin 9823887

Bacosterol-3-O-β-D-glucopyranoside 163184359

Bacosine 71312547

Loliolide 100332

Bacopaside I 21599442

Betulinic acid 64971

Centella asiatica Gotu Kola Apiaceae

Asiatic acid 119034

Madecassic acid 73412

Cianidanol 9064

Terminolic acid 12314613

Crocus sativus Saffron Iridaceae

Crocetin 5281232

Safranal 61041

Picrocrocin 130796

Kaempferol 3-sophoroside-7-glucoside 12960460

Crocetin dimethyl ester 5316132

Phytoene 5280784

Zeaxanthin 5280899

Beta-Carotene 5280489

Lycopene 446925

Phytofluene 6436722

Zeta-Carotene 5280788

Caffeic acid 689043

Gallic acid 370

Luteolin 5280445

Chlorogenic acid 1794427

Retinoic acid 444795

Drug

Donepezil 3152

Table 1. Patient demographics and outcome parameters of laparoscopic approaches.
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[51] with a cubic periodic box containing simple point 
charge (SPC) (10Å×10Å×10Å) and optimised potentials 
for liquid simulations (OPLS) all-atom force field 2005 
[52]. The system was subsequently neutralized by intro-
ducing the requisite amount of sodium ions. A receptor-
ligand complex was provided for the energy minimization 
step and pre-equilibration for various confined steps. The 
molecular dynamic simulations were conducted using the 
OPLS 2005 force field parameters and periodic bound-
ary conditions in the NPT ensemble system [53, 54]. The 
system was maintained at a constant temperature of 300 K 
with a relaxation time of 1 ps. The volume was kept con-
stant, and the smooth particle mesh ewald (PME) method 
was employed with a tolerance limit of 10-9 mm. A cut-
off distance of 9.0Å was used. The investigation of protein 
structures was conducted at a production time of 100 ns, 
with evaluations performed every 1 ns. To determine the 
stability, a model structure from the molecular dynamics 
(MD) simulation during the production phase was cho-
sen. In addition, the root mean square deviation (RMSD) 
and root mean square fluctuation (RMSF) to examine any 
structural changes that occurred during the dynamic inter-
action between the receptor and ligand complexes were 
also investigated [55]. 

Binding free energy calculations

The binding free energies of protein-ligand complexes 
have been calculated using MM-GBSA and molecular 
mechanics Poisson-Boltzmann surface area (MM-PBSA) 
[56, 57]. As a result, the PRIME module of Maestro 11.4 
and the OPLS-2005 force field were employed to calcu-
late the binding energy of the best-docked ligand-receptor 

Then checking and repairing missing atoms, the addition 
of polar hydrogens, the addition of Kollman charges, and 
spreading the charge deficit equally. Grid maps were also 
created for the proteins covering their active sites. For 
1B41, the grid size was set to 74×74×74 (XYZ) points, 
and the coordinates for the grid center were set to x= 
126.361, y= 102.556, and z= -121.778. For 1TQF, the grid 
size was set at 50×50×50 (XYZ) and the grid-centre coor-
dinates were x= 28.250, y= 45.805, and z= 2.86. 

Molecular docking

Molecular docking between ligands and target proteins is 
carried out to analyze the fit of ligands in protein’s active 
site [41]. The binding energy of each ligand is calculated 
for different poses/conformations of the ligand with the 
protein. The ligands and conformations showing the least 
binding energy indicate a favorable and stable fit with the 
protein. Autodock vina software [49] was used to perform 
the molecular docking between selected ligands and target 
proteins. Discovery studio (DS) was used to assess the op-
timal configuration for each ligand-protein interaction ac-
cording to binding energies. The ligands with the highest 
binding energy in the interaction profile were chosen for 
further examination through molecular dynamics simula-
tions. 

Molecular dynamics

The present investigation employed molecular dynamics 
(MD) simulations using the academic version of the Des-
mond program (version 2.0) to assess the structural stabil-
ity of receptor-ligand complexes) [50]. The system in this 
program was constructed using the TIP3P water model 

Figure 1. 3D Structures of target proteins. (A) Acetylcholinesterase enzyme. (B) β-secretase enzyme. Both proteins show the presence of inhibitors 
in the structure.
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complex using the equation below:
∆GBind = ∆EMM + ∆GSolv + ∆GSA

where ∆EMM is the difference of the minimized energies of 
the protein-ligand complex, while ∆GSolv is the difference 
between the GBSA solvation energy of the protein-ligand 
complexes and the sum of the solvation energies for the 
protein and ligand. ∆GSA indicates the surface area ener-
gies in the protein-ligand complexes and the difference in 
the surface area energies for the complexes [58]. 

ADME and toxicity analysis

Various characteristics were examined to evaluate the 
drug-like properties of the selected phytochemicals. Lipin-
ski’s rule, executed via molinspiration, was employed 
to analyze characteristics like the number of hydrogen 
acceptors (less than 10), the number of hydrogen donors 
(less than 5), molecular weight (more than 500 Daltons), 
and partition coefficient log P (not less than 5) [59]. The 
selected phytocompounds were subjected to their toxicity 
attributes. The 3D structures of the best-docked phyto-

compounds and Donepezil were converted to SMILES 
format and evaluated for toxicity using admetSAR [60] 
and PROTOX-III webserver [61]. 

Results

Molecular docking 

The results with the least (most negative) binding energy 
values are considered strong interactions and reflect a sta-
ble and favorable fit. The binding energies (kcal/mol) of 
the selected compounds with the two target proteins (1B41 
and 1TQF) are tabulated in Table 2. Retinoic acid showed 
a strong binding energy of -9.2 kcal/mol with 1B41 pro-
tein, while Somniferine showed the highest binding en-
ergy value of -8.8 kcal/mol with 1TQF protein. Donepezil 
showed binding energy values of -8.3 kcal/mol and -8.4 
kcal/mol with 1B41 and 1TQF, respectively (Table 2).
Discovery Studio Visualizer was used to analyze the in-
teractions of retinoic acid with 1B41, and Somniferine 
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S. No Phytocompounds
Free binding energy (kcal/mol)
1B41 1TQF

1 Withanone -8.7 -7.4

2 Somniferine -8.8 -8.8

3 Withasomnine -8.0 -6.8

4 (-)-Anaferine -7.0 -6.9

5 Withaoxylactone -8.9 -7.7

6 Withasomniferol A -8.2 -8.7

7 Viscosalactone B -8.6 -7.1

8 Physagulin-d -8.6 -8.7

9 Bacopasaponin A -8.4 -7.1

10 Plantainoside D -8.8 -8.5

11 Cucurbitacin A -8.2 -7.6

12 Rosavin -8.4 -7.6

13 Bacosterol-3-O-β-D-glucopyranoside -8.5 -7.2

14 Bacosine -7.7 -6.7

15 Loliolide -6.8 -5.6

16 Bacopaside I -8.7 -7.7

17 Asiatic acid -7.6 -6.2

18 Madecassic acid -8.1 -7.1

19 Cianidanol -7.9 -7.7

20 Terminolic acid -7.7 -7.4

21 Crocetin -7.6 -7.4

22 Safranal -6.8 -5.4

23 Picrocrocin -7.8 -6.1

24 Betulinic acid -8.0 -7.8

25 Caffeic acid -6.8 -5.6

26 Gallic acid -6.8 -5.5

27 Chlorogenic acid -8.7 -8.1

28 Luteolin -8.6 -7.5

29 Retinoic acid -9.2 -7.6

30 Donepezil (Drug) -8.3 -8.4

Table 2. Binding energy (kcal/mol) of selected phytocompounds and drugs with target proteins.
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with 1TQF (Figure 2). Retinoic acid formed a hydrogen 
bond with HIS (A):287, and two Pi-sigma bonds with 
TYR (A):341 and TRP (A):286 residues of 1B41 protein. 
Other non-covalent interactions were formed with TYR 
(A):124 and VAL (A):294 residues of 1B41. Somniferine 
was found to form two hydrogen bonds with LYS (A):321 
and ARG (A):307 residues of 1TQF protein. Other non-
covalent interactions were formed with ILE (A):110 and 
ARG (A):307 residues of 1TQF. Interactions of Donepezil 
with both the target proteins are also shown in Table 3.   

Molecular dynamics

Molecular dynamics simulation is used to study the dy-
namic behavior of protein-ligand complexes over time. It 
provides insights into the motions, interactions, and struc-
tural changes of atoms and molecules at the atomic or 
molecular level within a protein-ligand complex. Retinoic 

acid and Somniferine demonstrated strong binding en-
ergy when interacting with 1B41 and 1TQF, respectively. 
Subsequently, the protein-ligand complexes of retinoic 
acid-1B41 and somniferine-1TQF were screened through 
molecular dynamics simulations for 100 ns. 

RMSD analysis of protein-ligand complexes

The RMSD reflects the average deviation in the positions 
of selected atoms of a simulated complex from a refer-
ence structure over a trajectory. The deviation for each 
frame in the trajectory is calculated. Figure 3 displays the 
RMSD evolution of the protein (left y-axis) and the ligand 
(right y-axis). The starting point is defined by the docked 
arrangement of the ligand and the protein in the complex. 
The deviation from this reference position during the MD 
simulation is then gauged by aligning all protein-ligand 
frames obtained throughout the trajectories. The term "lig 

Figure 2. Docked pose of the top-ranked ligands with target proteins. (A) 3-D interactions of retinoic acid with interacting amino acids of 1B41. (B) 
2-D interactions of retinoic acid with interacting amino acids of 1B41. (C) 3-D interactions of Somniferine with interacting amino acids of 1TQF. (D) 
2-D interactions of Somniferine with interacting amino acids of 1TQF.
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fit prot" (line colored in magenta) implies the RMSD of 
the ligand from the backbone of the protein. For retinoic 
acid-1B41 complex, the protein backbone hovers within 
the range of 2Å-3.4 Å and fluctuation initially up to 30 
ns. The complex was then stable between 30 to 80 ns in 
between 2-2.8 Å, then showed fluctuation between 80-
90 ns between 2.0-3.2 Å (Figure 3A). The RMSD plot of 
somniferine-1TQF complex (Figure 3B) shows a more 
fluctuating curve. The protein backbone hovers in the 
range from 1.2 Å to 2.8 Å from 0-100 ns. The lig-fit-prot 
curve remained well below the protein backbone curve in 
both protein-ligand complexes, indicating that the orienta-
tion of the ligand remains the same (Figure 3).

RMSF analysis of protein-ligand complexes

The RMSF measures the localized structural changes 
along the protein chain during molecular dynamics 
simulations. Peaks on the RMSF plot indicate regions 
of the protein that experience the maximum fluctuations 
throughout the simulation. Secondary structure elements, 
such as α-helices and β-strands, highlighted with red and 
blue backgrounds, respectively, are characterized by lower 
fluctuations, signifying their inherent rigidity. In contrast, 
loop regions, often unstructured, tend to exhibit higher 
fluctuations, emphasizing their dynamic nature. The 
green-colored vertical bars mark the protein residues that 
encounter the ligand. These interactions play a crucial role 
in understanding the binding dynamics and stability of the 

complex.
To complement the RMSF analysis, the plot also cor-
relates the fluctuation data with experimental B-factors. 
While the RMSF and B-factor definitions differ, a paral-
lel between simulation results and crystallographic data 
is anticipated. This correlation enhances the reliability of 
the MD simulation outcomes, offering a valuable perspec-
tive on the agreement between computational predictions 
and experimental observations. The trajectory of 1B41-
retinoic acid complex shows a plot with minimal residual 
fluctuations in the range of 0.5-1.2 Å and almost parallel 
RMSF and B-Factor curves (Figure 4A). The plots of 
Somniferine with 1TQF initially displayed few differences 
in the RMSF and B-Factor values (Figure 4B) till resi-
due index 100-120, and after that they show overlapping 
RMSF and B-Factor curves. 1TQF-somniferine displayed 
residual fluctuation in the range of 1.0-2.0 Å.

Ligand properties

In the MD simulation, the behaviour of the two best per-
forming phytocompounds, Retinoic acid and Somniferine 
was assessed over a 100 ns timeframe, with key proper-
ties evaluated to understand their stability and interaction 
with the surrounding environment (depicted in Figure 5). 
For the retinoic acid, The Root Mean Square Deviation 
(RMSD) fluctuated between 0.5 Å and 1.5 Å while for 
Somniferine, the range remained below 0.6 Å, indicat-
ing that the ligands maintained a stable structure with 

Figure 3. RMSD graphs of protein-ligand complexes for 100 ns. (A) Retinoic acid complexed with 1B41. (B) Somniferine complexed with 1TQF 
protein. The following are the color legends: heavy ions (yellow), Cα (blue), side chains (green), ligand with protein (dark pink), and ligand with 
ligand (pink).

Protein Ligand No. of hydrogen bonds Hydrogen bonds Non-covalent interactions

1B41
Retinoic acid 1 His (A):287) Tyr (A):341, Trp (A):286, Tyr (A):124, Val (A):294

Donepezil 2 Tyr (A):72, Ser (A):293
Tyr (A):341, Trp (A);286, Tyr (A):124, Phe (A):2997, 
Leu (A):289

1TQF

Somniferine 2 Lys (A):321, Arg (A):307 Ile (A:110), Arg (A):307

Donepezil 6
Arg (A):307, Lys (A):321,
Gly (A):230, Asp (A):32,
Thr (A):72, Tyr (A):198

Val (A):309, Tyr (A):71, Pro (A):70

Table 3. Binding interactions of Retinoic acid, Somniferine, and Donepezil with target proteins.
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minor deviations from their initial conformations (time t 
= 0). The Radius of Gyration (rGyr), which measures the 
‘extendedness’ of the ligand, fluctuated slightly between 
4.8 Å to 5.1 Å for Retinoic acid and between 5.12 Å and 
5.28 Å for Somniferine, showing that the ligands retained 
compact shape throughout the simulation. Notably, no 
intramolecular hydrogen bonds (intraHB) were detected 
in both simulations, suggesting that the ligands did not 
rely on internal hydrogen bonds to maintain their struc-
tural stability. The molecular surface area (MolSA), which 
represents the molecular surface calculated with a 1.4 Å 
probe radius (comparable to the van der Waals surface), 
ranged from 332.5 Å² to 340 Å² in Retinoic acid and be-
tween 474 Å² - 486 Å² in Somniferine, indicating minimal 
changes in the ligand’s surface. The Solvent Accessible 
Surface Area (SASA), which measures the extent to which 
the ligand is exposed to solvent (water), fluctuated be-
tween 50 Å² and 200 Å² for Retinoic acid and between 120 
Å² and 300 Å² in Somniferine. Higher SASA values could 
imply that the ligand is more exposed and possibly at risk 
of being pulled away from the active site of the protein by 
the solvent, while lower values indicate stronger interac-
tion with the protein. The polar surface area (PSA), which 
accounts for the solvent-accessible areas contributed by 

polar atoms (oxygen and nitrogen), ranged from 87 Å² to 
93 Å² in retinoic acid and 150 Å² to 168 Å² in somniferine.

Protein-ligand contacts histogram

The interactions between the protein and the ligand are 
studied throughout the simulation and depicted through 
the histogram. Four types of interactions are summarized 
in the plots (Figure 6): hydrogen bonds (green), hydro-
phobic (grey), ionic (pink), and water bridges (blue). Reti-
noic acid complexed with 1B41 showed one ionic bond 
with Asp (A): 74; water bridges with Asn (A):  283, His 
(A):  287, Leu (A): 289, Pro (A): 290, and Arg (A): 296; 
polar contacts with Leu (A): 76, Tyr (A): 77, Trp (A): 86, 
Tyr (A): 124, Phe (A):  295, Phe (A): 297, Tyr (A): 337, 
Phe (A): 338 and Tyr (A): 341 (Figure 6A). Somniferine 
formed the polar contacts interactions with Phe (A):148, 
Met (A):149, Arg(A):156, Phe (A):161, Leu (A):166, Pro 
178, Met (A):194, Phe (A): 213 residues of 1TQF protein 
(Figure 6B). Figure 6C and 6D depict the interactions 
of crucial amino acids of selected target proteins with 
retinoic acid and Somniferine. Several residues establish 
several explicit interactions with the ligand, as seen by a 
more diffuse shade of orange, as indicated by the scale on 
one side of the figure. These plots are extremely important 

Figure 5. Ligand properties for best-docked phytocompounds. (A) Retinoic acid on interacting with 1B41 protein and (B) Somniferine on 
interacting with 1TQF protein during MD simulation such as RMSD, the radius of gyration (rGyr), intramolecular hydrogen bonds (intraHB), 
Molecular Surface Area (MolSA), Solvent Accessible Surface Area (SASA), Polar Surface Area (PSA).

Figure 4. RMSF plot of the protein-ligand complexes for 100 ns. (A). Retinoic acid complexed with 1B41. (B) Somniferine complexed with 1TQF 
protein. The color legends are as follows: Cα (blue), backbone (green), heavy atoms (brown), and B factor (dark pink).
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because they show that retinoid acid and Somniferine in-
teract with the amino acids of target proteins throughout 
the simulation and do not dissociate from their interact-
ing site. On the other hand, small changes in the ligand’s 
RMSD and RMSF values, as shown in Figures 2 and 3, 
respectively, imply that the ligands may be reorienting 
themselves during the simulation.

Preservation of intermolecular contacts in molecular 
dynamics simulations

In the 1B41-Retinoic acid complex, the ligand interacts 
with the TYR341 residue of the protein. The interaction 
is primarily hydrophobic, indicated by the green label, 
reflecting non-polar side chain interactions between the 
tyrosine residue and the hydrophobic components of the 
ligand. The ligand’s structure, which includes extensive 
conjugation represented by alternating single and double 
bonds in the E-configuration along with bulky cyclic 
structures, enhances this interaction by maximizing hy-
drophobic contact. In the 1TQF-Somniferine complex, 
several key interactions were observed during the molecu-
lar dynamics simulation. The GLU (A):141 residue forms 
a hydrogen bond with the ligand, preserved for 83% of the 
simulation time, and contributes to stabilizing the inter-
action through electrostatic attraction due to its negative 
charge. The PHE (A):148 residue engages in a Pi-Pi stack-
ing interaction with the ligand’s aromatic rings, with a 
41% occurrence during the simulation, enhancing hydro-
phobic interactions. Additionally, the LYS (A):145 residue 

forms a Pi-cation interaction with the ligand, maintained 
for 99% of the simulation time, reflecting a highly stable 
contact between the positively charged lysine residue and 
the ligand’s aromatic ring. These interactions, including 
hydrogen bonds, Pi-Pi stacking, and Pi-cation contacts, 
play a significant role in maintaining the structural stabili-
ty of the ligand-protein complex. Figure 7 presents the 2D 
interaction maps of the best-docked compounds, illustrat-
ing the maintenance of contacts throughout the simulation 
trajectory.

Binding-free energy calculations 

Post-simulation analysis of both protein-ligand complexes 
was carried out by capturing snapshots of the trajectory 
profiles generated during MD simulations, as shown in 
Table 4. It was observed that both protein-ligand complex-
es exhibited negative ∆Gbinding energies, suggesting the sta-
bility of these complexes during the MD simulation. The 
results showed that the Van der Waals interactions (∆GvdW) 
were -44.13 ± 5.22 kcal/mol for the retinoic acid-1B41 
complex and -56.97 ± 2.76 kcal/mol for Somniferine-
1TQF complexes, indicating that both the ligands remain 
close to the interacting amino acids of the target proteins. 
The Coulomb energy displayed a negative value in all 
complexes, indicating consistently low potential energy 
for ligands when bound to their respective target proteins. 
The finding indicates that protein-ligand complexes gener-
ally exhibit improved stability. Table 4 provides an exten-
sive overview of the contributions made by different com-

Figure 6. Interaction profiles of protein-ligand complexes. (A) Interaction profile of retinoic acid-1B41 protein. (B) Interaction profile of 
Somniferine-1TQF protein. (C) Timeline representation of the interactions of amino acids of 1B41 protein with retinoic acid, (D) timeline 
representation of the interactions of amino acids of 1TQF protein with Somniferine. The bars are colored to show different types of interactions, such 
as hydrogen bonds (green), polar contacts (purple), and water-bridges (blue).

A B

C D

107  Shubham Kumar, et al.

http://www.antpublisher.com/index.php/APT/index


All Rights Reserved

R
E

SE
A

R
C

H

ponents, such as hydrogen bonding and covalent bonding, 
to the total energy, along with the associated total energy 
values.

Drug-likeness and toxicity analysis  

Table 5 displays the results of Lipinski’s rule of five for 
the best-docked phytocompounds and selected drugs that 
were chosen. Both the selected phytocompounds and se-
lected drugs were found to follow Lipinski’s rule of five. 
The results from toxicity prediction showed that retinoic 
acid and Somniferine were non-neurotoxic, non-carci-
nogenic, and non-cytotoxic in nature, whereas, the drug, 
Donepezil was positive for all these parameters. Retinoic 
acid was positive for hepatotoxicity, while Somniferine 
was immunogenic in nature. The predicted LD50 (mg/kg) 
was found to be 1100 (Class-4) for both retinoic acid and 
Somniferine, whereas the predicted LD50 for Donepezil 
was found to be 550 mg/kg (Class-4), indicating the non-
toxicity of both the phytocompounds.

Discussion

Computational drug discovery methods have emerged as 
efficient pillars in the lifecycle of drug-development [62]. 
Taking the ‘experimental set-up’ to ‘virtual environment’ 
has allowed the screening of even billions of molecules 
for their drug-likeness properties against many disease tar-
gets [63]. In-silico analyses have significantly reduced the 
time and cost of identifying suitable molecules as drugs, 
expected to reduce clinical trial failures at later stages. The 
chemical space of compounds that can be used as drugs 
is huge, with a large part of them coming from traditional 
herbal knowledge. Natural compounds have shown prom-
ising therapeutic potential and reduced toxicity values [64] 
and provide cost-effective measures in terms of synthesis 
and collection of raw material. Building upon traditional 
knowledge of such natural herbs, this investigation aimed 
to find potential therapeutic compounds to treat Alzheim-
er’s disease.
Several plants have long been used traditionally as brain 
tonics and neuroprotective agents [65]. Our study aimed 
to explore the binding interactions between natural com-
pounds from such neuroprotective herbs including Witha-
nia somnifera, Bacopa monnieri, Centella asiatica, and 
Crocus sativus, and enzymes associated with Alzheimer’s 
disease. Among the 39 compounds screened, retinoic 
acid (PubChem ID: 444795) and somniferine (PubChem 
ID: 14106343) emerged as promising candidates for Al-
zheimer’s disease therapy as they exhibited strong binding 
affinities (-9.2 kcal/mol and -8.8 kcal/mol, respectively) 
and stable interactions with AChE (PDB ID: 1B41) and 
BACE-1 (PDB ID: 1TQF), respectively. Prior research 
emphasizes the significance of AChE and BACE-1 inhibi-
tion in mitigating cognitive symptoms linked to Alzheim-
er’s [66-68]. Retinoic acid was established as a potent 
AChE inhibitor in this study, a key target for Alzheimer’s 
treatment [69, 70]. BACE-1 inhibitors are another class 
of compounds studied against Alzheimer’s [11, 47]. Som-
niferine has been estimated to be a promising BACE-1 
inhibitor in this investigation. 
Phytocompounds like Withaferine [71] and Withano-
lides [72] from Withania somnifera have been studied 
by researchers for their potential against AD. Our study 
established Somniferine, an alkaloid found in Withania 
as another novel candidate for Alzheimer’s disease treat-
ment. Another compound, retinoic acid, found in many 
plants including Crocus sativus was established as a lead 
compound to manage Alzheimer’s disease via AChE inhi-
bition. Retinoic acid has also been previously studied as a 
therapeutic option for AD through cholinergic restoration 
[73]. Additionally, computational toxicity prediction plays 
a crucial role in drug discovery by facilitating early com-
pound screening and reducing clinical trial failures [74]. 
The favorable ADMET properties of retinoic acid and 

Figure 7. Preserved contacts of Retinoic acid with 1B41 (A) and 
Somniferine with 1TQF (B) proteins, captured during MD simulations. 

Proteins Ligands ∆GBind

(kcal/mol)
∆GCoulomb

(kcal/mol)
∆GvdW

(kcal/mol)
∆GH-bond

(kcal/mol)
∆GCovalent

(kcal/mol)
1B41 Retinoic acid -39.45 ± 6.94 -32.53 ± 12.08 -44.13 ± 5.22 -0.54 ± 0.05 2.22 ± 1.16

1TQF Somniferine -68.13 ± 4.43 -17.11 ± 3.21 -56.97 ± 2.76 -0.49 ± 0.13 2.16 ± 0.77

Table 4. MM/GBSA profiles of best-docked phytocompounds during interaction with target proteins.
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Somniferine underscore their potential as viable Alzheim-
er’s treatment candidates. However, in silico analyses are 
preliminary, and have their limitations. Understanding 
how drugs interact with the body and predicting their real-
world outcomes can only be confirmed through experi-
mental validation, given the dynamic and complex nature 
of biological systems. It’s imperative to conduct compre-
hensive in vitro and in vivo studies to thoroughly assess 
the efficacy and toxicity profile of lead compounds.

Conclusions

In conclusion, this research aims to connect traditional 
herbal wisdom with modern scientific methods, investi-
gating how bioactive compounds from traditional herbs 
could be used therapeutically for Alzheimer’s disease. The 
study focused on 39 key compounds found in neuropro-
tective herbs and employed a cheminformatics approach, 
combining computational biology techniques such as 
molecular docking and molecular dynamics simulations 
with pharmacological and ADMET analyses. The selected 
compounds were thoroughly analyzed for drug-likeness, 
pharmacokinetic properties, and toxicity, revealing valu-
able insights into their potential as drug candidates for 
Alzheimer’s disease therapy. Among 39 selected phy-
tocompounds, retinoic acid and Somniferine exhibited 
particularly promising binding interactions, demonstrating 
adherence to the Lipinski rule, and showing low toxicity. 
Both the phytocompounds outperformed the standard AD 
drug, Donepezil, in terms of binding affinity and toxicity 
properties. The molecular dynamics simulations provided 
a dynamic perspective on the stability and fluctuations 
of the protein-ligand complexes over time. Retinoic acid 
and somniferine displayed stable interactions with respec-

tive target enzymes (1B41 and 1TQF). However, further 
experimental validation, including in vitro and in vivo 
studies, will be crucial to substantiate the observed in-
teractions and therapeutic potential. This research serves 
as a promising point for unraveling the hidden pharma-
cological treasures within nature. By merging traditional 
knowledge with cutting-edge computational techniques, 
the study contributes to the ongoing quest for innovative 
treatments for Alzheimer’s disease, a global healthcare 
challenge.
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