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Abstract
Background: Parkinson's disease (PD) is a neurodegenerative disorder with a worldwide health impact, 
characterized by well-established roles of reactive oxygen species, mitochondrial dysfunction, and apoptotic 
biomarkers. Although various treatments are available for PD patients, they often come with adverse effects, 
and pharmacological efficacy decreases over time. Sulphated polysaccharides are a class of diverse anionic 
biopolymers reported to have several pharmacological activities. The present study aimed to assess the in vitro 
neuroprotective potential of the iota-carrageenan (CSf) isolated from the red alga Solieria filiformis.  
Methods: After purification process by precipitation method with cetylpyridinium chloride (CPC), CSf was 
characterized by yield, free-sulphate content, and gel permeation chromatography analysis. The antioxidant 
potential was determined by 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, hydrogen 
peroxide (H2O2) radical scavenging activity, Reducing power method, and oxygen radical absorbance capacity 
(ORAC). Cytotoxicity was evaluated using human neuroblastoma (SH-SY5Y) and Balb/c (3T3) mouse fibro-
blasts cells. The neuroprotection potential was analyzed by 6-hydroxydopamine (6-OHDA)-induced neurotox-
icity model on SH-SY5Y cells. 
Results: As expected, CSf revealed about 28% of free-sulphate content and an estimated molar mass of 425 
kDa. Despite the low antioxidant capacity exhibited by CSf, it showed the ability to scavenge H2O2. Further-
more, CSf protected SH-SY5Y cells against 6-OHDA induced damage by modulating mitochondrial membrane 
potential, reducing H2O2 generation, and regulating caspase-3 activity. In addition, no cytotoxic effects were 
recorded on SH-SY5Y and 3T3 cells, in presence of CSf. 
Conclusion: The neuropharmacological effects and safety of CSf suggest its potential for the development of 
novel therapeutic strategies against PD.
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Introduction

Parkinson’s disease (PD) is a second most frequent neu-
rodegenerative disorder, which is characterized mainly 
by a progressive loss of catecholaminergic neurons [1]. 
Because of its multifactorial pathogenesis, PD origin is 
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still unclear, no effective cure is currently available, and 
its treatment remains a challenge as well [2]. However, in 
vitro neurodegenerative cellular models have shown the 
involvement of oxidative stress, mitochondrial dysfunc-
tion and apoptotic pathway activation in PD pathogenesis 
[3, 4]. Among those experimental models, researchers 
have frequently used the neurotoxin 6-hydroxydopamine 
(6-OHDA), which was initially identified in PD patients, 
along with the human neuroblastoma SH-SY5Y cell-line, 
to assess neuroprotective potential of drugs [5-8]. 
The search for natural active polymers may provide new 
therapeutic alternatives for the treatment of neurodegen-
erative diseases, such as PD [9, 10]. Among those promis-
ing biopolymers, a group of highly complex and hetero-
geneous polymers present in the extracellular matrix of 
marine algae, named sulphated polysaccharides (SPs), has 
been accumulating evidences supporting their neuropro-
tective activity [11-14]. Carrageenans represent a generic 
name of a family of SPs found in marine algae, and these 
molecules have been reported to have a range of uses in 
the food, cosmetics, and pharmaceutical industries [15-
17]. Based on chemical composition, carrageenans are 
divided into six basic forms: Iota (ɩ)-, Kappa (κ)-, Lambda 
(λ)-, Mu (μ)-, Nu (v)- and Theta (ө) [18]. The red marine 
alga Solieria filiformis (Kützing) P. W. Gabrielson (Gigar-
tinales, Solieraceae) represents a source of ɩ-carrageenan 
(CSf) [19]. Its chemical structure has been described 
in the literature and consists essentially an iota(ɩ)-type 
composed of a 3-linked β-D-galactopyranose-4-sulphate 
(G4S-units) connected to 4-linked 3,6-anhydro-α-D-
galactopyranose-2-sulphate (DA2S-units) or 3,6-anhydro-
α-D-galactopyranose (DA-units) [20-23]. Moreover, CSf 
has been reported to possess anti-inflammatory, antiviral, 
vasorelaxant, antinociceptive, and gastroprotective activi-
ties [19, 21-25] along with the absence of in vivo toxicity 
[21]. Nonetheless, the neurological impact of the CSf and 
its pharmacological potential is not clear yet. Therefore, 
this study aimed to evaluate the neuroprotective potential 
of the CSf against 6-OHDA-induced neurotoxicity on SH-
SY5Y cells. 

Methods

Materials

SH-SY5Y and Balb/c 3T3 mouse fibroblast (3T3) cell-
lines were obtained from the DSMZ Human and Animal 
Cell Lines Bank. The cell culture was performed accord-
ing to the supplier’s handling information. Fetal bovine 
serum (FBS) was purchased from Gibco (Gaithersburg, 
MD, USA). JC-1 dye (T3168) was obtained from Molecu-
lar Probes (Eugene, OR, USA). Caspase-3 fluorimetric as-
say kit (Casp3f) was purchased from BioVision (Milpitas, 
CA, USA). Hydrogen peroxide assay kit (Amplex™ Red, 
A22188) was purchased from Life Technologies (Carlsbad, 
CA, USA). The absorbances of antioxidant and cellular 
assays were measured in Synergy H1 Multi-Mode Micro-
plate Reader (BioTek® Instruments, Winooski, VT, USA). 
All solutions used in the cellular assays were previously 
diluted in culture medium without FBS, and sterile filtered 

(0.2 µm, WhatmanTM, Little Chalfont, UK). 96-well plates 
and other chemicals and reagents were obtained from 
Sigma-Aldrich (Carlsbad, CA, USA).

CSf 

Specimen of the red seaweed S. filiformis were collected 
during winter (August) at the beach of Trairí city (Ceará, 
Brazil), followed by cleaning process and storage at –20 
°C until further use. A voucher specimen (number 35682) 
was deposited at the Herbarium Prisco Bezerra, Depart-
ment of Biological Sciences, Federal University of Ceará, 
Brazil. The isolation of CSf was carried out as previously 
described by Coura et al. [26]. Briefly, the total extract 
was submitted to protease digestion by papain (60°C, 6 
h) in 100 mM sodium acetate buffer (pH 5.0) containing 
EDTA and cysteine (both 5 mM), followed by method of 
purification through precipitation with cetylpyridinium 
chloride. After, the following chemical analysis were per-
formed: the yield of carrageenan per gram of alga tissue 
(dry amount of 5 g) [27], the percentage of free-sulphate 
[28], and the molecular mass by gel permeation chroma-
tography (GPC) [29]. Additionally, potential presence 
of protein contaminants was also assessed by Bradford 
method [30]. 

Antioxidant potential

The evaluation of the antioxidant potential of the CSf (at 
0.1, 0.5, 1.0, and 2.0 mg/mL) was performed and calcu-
lated as described previously by Souza et al. [29], by four 
different methods: DPPH (1,1-diphenyl-2-picrylhydrazyl) 
assay, hydrogen peroxide (H2O2) radical scavenging ac-
tivity, reducing power method (RP), and oxygen radical 
absorbance capacity (ORAC). Ascorbic acid was used as 
the standard (positive control) in the first three methods. 
The data were expressed as percentage. Trolox standard 
(6-hydroxychromane substituted with a carboxy group at 
position 2 and methyl groups at positions 2, 5, 7, and 8) 
was used to calculate the equivalence in the ORAC assay, 
where the oxygen radical absorbance capacity of the CSf 
was expressed as µmol Trolox equivalents per gram of the 
sample. Distilled water was used as a negative control in 
the assays conducted. 

Cytotoxic assay

The cytotoxicity of CSf was evaluated on SH-SY5Y and 
3T3 cell lines by MTT (3-(3,4-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide) assay, as described in Souza 
et al. [29]. Briefly, the cells were culturing in complete 
growth medium (CGM): DMEM Han’s F-12 (Biochrom, 
T481-01) medium with addition of HEPES (3.2%-Pan-
reac, A3268.0100), sodium carbonate (2.2%-Panreac, 
131638.1211), FBS (10%, fetal bovine serum-Alfagene, 
LTID 10270 -106), penicillin G (100 U/mL), amphotericin 
B (0.25 µg/mL), and streptomycin (100 µg/mL-Sigma, 
A5955). Every three days, the complete growth medium 
was refreshed. The cells were subcultured in T25-flasks 
and maintained in controlled conditions (95% humid-
ity, 5% CO2, 37 °C). The cell suspension was seeded 
into 96-well plates and incubated until total monolayer 
was achieved. Then, 1 mg/mL of CSf was added and the 
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plates were incubated for 24 hours. After, the intracellular 
metabolic activity was assessed with MTT assay (1.2 mM 
MTT, during 4 h at 37 °C). The formazan products were 
dissolved in isopropanol (Panreac, 131090.1611), con-
tained HC (0.04 M). The absorbance was measured at 570 
nm and reported as a percentage of the non-treated cells 
(negative control). 

Analysis of potential in vitro neuroprotection

The neuroprotective potential of CSf was evaluated ac-
cording to Souza et al. [29] by 6-OHDA-induced neuro-
toxic cellular model on the SH-SY5Y cell line.

6-OHDA-induced cytotoxic model on the SH-SY5Y cell 
line

Briefly, cells at full confluence were transferred into a 96-
well plate and incubated either under exposure to 6-OHDA 
(100 µM) alone or followed by the addition of CSf (1 to 
0.01 mg/mL) for 24 hours. As a negative control, cells 
were incubated only with culture medium. The neurotoxic 
effects were assessed using the MTT assay, with the re-
sults reported as a percentage relative to the negative con-
trol.

Mitochondrial membrane potential (MMP) depolarization 
assay

To evaluate the neuroprotective effect of CSf on the MMP, 
SH-SY5Y cells at total confluence were transferred to a 
96-wells plate and incubated for 6 hours either in the pres-
ence of 6-OHDA (100 µM) alone or followed by the addi-
tion of CSf (1 and 0.6 mg/mL). As a negative control, cells 
were incubated only with culture medium. MMP was then 
analyzed through JC-1 MMP assay, according to the sup-
plier’s information. The absorbance measurements of JC-1 
aggregates (490 nm/590 nm) and its monomeric form (490 
nm/530 nm) were conducted in real-time over 30 minutes. 
Results were reported as a percentage of the ratio of JC-1 
monomers to aggregates relative to the negative control. 

Caspase-3 assay

To determine the effect of CSf in the caspase-3 activity, 
cells at full confluence were transferred to a 96-wells 
plate and incubated for 6 hours either in the presence of 
6-OHDA (100 µM) alone or followed by the addition of 
CSf (1 and 0.6 mg/mL). As a negative control, cells were 
incubated only with culture medium. Then, caspase-3 
activity was measured, according to the supplier’s infor-
mation. The absorbance measurements (496 nm/520 nm) 
were performed in real-time for 60 min. The results were 
obtained using a linear regression model of the fluores-
cence spectral data and expressed in arbitrary units (ΔUA) 
of fluorescence/milligrams of protein/time (min).

H2O2 generation

To verify the effect of CSf in generation of H2O2, cells 
at full confluence, were transferred into microplates and 
incubated under exposure of 6-OHDA (100 µM) and/or 
only CSf (1 and 0.6 mg/mL) for 12 hours. As a negative 
control, cells were incubated only with culture medium. 
Afterward, quantification of H2O2 levels was performed 
using the hydrogen peroxide assay kit (AmplexTM Red), 
according to the supplier’s information. The absorbance 
measurements (590 nm/530 nm) were performed in real-
time during 60 min. The results were obtained using a lin-
ear regression model of the fluorescence spectral data and 
expressed as a percentage relative to the negative control. 

Data and statistical analyses

Antioxidant and cellular assays results are presented as the 
SEM (mean ± standard error of mean). Paired Student's t-
test was used to compare two groups. For comparisons in-
volving three or more groups, One- or Two-way ANOVA 
(Analysis of Variance) was performed, and Bonferroni's 
post hoc test. Statistically significant differences were 
considered when p-value < 0.05. GraphPad Prism® 5.01 
(GraphPad Software, San Diego, CA; www.graphpad.
com) was used to perform the statistical analyses. All data 
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Figure 1. Antioxidant potential of CSf. (A) DPPH, (B) reducing power (RP), and (C) H2O2 assays, respectively. Figure 1A and 1C illustrate the 
scavenging activity of CSf at varying concentrations, while Figure 1B the inhibition of reducing power by CSf compared to ascorbic acid. Notably, in 
these assays, CSf demonstrates less than 50% of the antioxidant potential observed for ascorbic acid. The values correspond to mean ± SEM at least 
three independent experiments carried out in triplicate. Two-way ANOVA, Bonferroni test. ***P < 0.001, in comparison with the positive control 
(Ascorbic acid), and #P < 0.05, in comparison with the negative control..
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were obtained of at least three independent experiments, 
carried out in triplicate and at different times. 

Analysis of caspase-3 activity and H2O2 generation

Concerning the caspase-3 assay, the SH-SY5Y cells cul-
tivated in presence of 6-OHDA exhibited a reduction of 
this enzyme activity when treated with CSf (1 mg/mL: P 
< 0.001, 196.3 ± 0.55; and 0.6 mg/mL: P < 0.01, 233.1 
± 0.68, respectively), in relation to the non-treated group 
(505 ± 0.67) (Figure 3C). Furthermore, CSf (1 and 0.6 mg/
mL) did not promote significant changes in caspase-3 ac-
tivity in non-treated cells with the neurotoxin. Concomi-
tantly, the analysis of H2O2 generation revealed high levels 
of H2O2 in cells exposed to 6-OHDA (P < 0.05, 215.6 ± 
0.18), in relation to the control group (100.1 ± 0.27) (Fig-
ure 3D). On the other hand, SH-SY5Y cells treated with 
the highest concentration of CSf (1 mg/mL), maintained 
H2O2 generation at basal levels (119.1 ± 0.31). Addition-
ally, CSf (1 and 0.6 mg/mL) did not stimulate significant 
changes in the H2O2 generation in non-treated cells with 
the neurotoxin, when compared to the control group.

Discussion

Because of structural heterogeneity and composition of 
polymers from marine algae, a broad range of bioactivities 
has been found. Furthermore, these polymers have shown 
potential for various pharmacological and biotechnologi-
cal applications. Among them, a chemical and structural 
diversity of SPs have been investigated and classified 
[29, 31, 32]. Despite being relatively new to the scientific 
literature, neuroprotective activities from marine algae 
polymers are increasingly reported. These studies have 
been investigated and collaborated to a possible develop-
ment of new therapeutic strategies and pharmacological 
applications [29, 33-35]. In the present study, the chemical 
characteristics, antioxidant potential, and cytotoxic and 
neuroprotective effects of the SP isolated from S. filiformis 
are reported. Indeed, the chemical features of the CSf have 
been previously well-reported in the literature [20-23]. 
Evidently, the analysis performed in this study revealed 
yield and sulphate content similar to the ɩ-carrageenan de-
scribed by Araújo et al. [19]. Furthermore, a higher value 
of molecular mass with a polydispersive characteristic 
was identified. These findings are commonly exhibited by 
SPs from marine algae, due to the grouping of polysac-
charide chains [11]. 
Among the bioactivities, the antioxidant action can serve 
as an indicator of a potential neuroprotective activity [36]. 
Antioxidants are compounds capable of either delay or 
inhibiting oxidation processes and belong to the defense 
mechanism of an organism against the development of 
pathologies associated with the attack of free radicals [37]. 
The antioxidant potential of the SP isolated from S. filifor-
mis has been previously reported [22, 25]. Nevertheless, 
the results shown here revealed that CSf possesses weak 
antioxidant properties in general. The differences observed 
in the antioxidant capacity of a SP can be influenced by 
various factors, such as concentration, the antioxidant as-
say as well as by the extraction method chosen to analysis. 
Indeed, Peñuela et al. [25] reported a positive antioxidant 

Figure 2. Cytotoxicity of CSf (1 mg/mL) on SH-SY5Y (A), and 3T3 
cells (B), respectively. In Figure 2A, cellular viability does not show 
significant difference when compared to the control group, whereas in 
Figure 2B, an opposite trend is observed, indicating enhanced viability. 
Paired Student's t-test, *P < 0.05, when compared with control group.

A B

Results

Chemical analysis and antioxidant potential 

The extraction yield of CSf was approximately 20% per 
gram of dry alga, with a free-sulfate content of about 
28%. No protein contaminants were detected. The molar 
mass of CSf was estimated at 425 kDa. A single broad 
peak observed in the GPC analysis indicated a highly 
polydisperse molar mass. The antioxidant activity analysis 
of CSf revealed low antioxidant properties in the ORAC 
assay (28.2 ± 2 µmol Eq. Trolox per gram of CSf) and no 
activity in the DPPH and RP methods (Figures 1A and 
1B). Although CSf has exhibited low antioxidant potential 
(less than 50%) compared to ascorbic acid, it showed a 
tendency toward H2O2 scavenging activity at a concentra-
tion of 1 mg/mL compared to the negative control. This 
effect became significant (P < 0.05) at a concentration of 
2 mg/mL (Figure 1C).   

Cytotoxicity and mitochondrial assessment

CSf (1 mg/mL) showed no cytotoxicity in the tested cell 
lines compared to their respective control groups (Figure 
2). Furthermore, CSf (1 mg/mL) exhibited a capacity to 
increase the mitochondrial activity of 3T3 cells in relation 
to the control group (Figure 3A). Regarding the evalua-
tion of neuroprotective activity on SH-SY5Y cells, it was 
possible to observe that the presence of CSf (1 and 0.6 
mg/mL) protected the cells against mitochondrial activity 
changes (P < 0.001, 96.2 ± 0.05 and 62.4 ± 0.05, respec-
tively), compared to 6-OHDA- treated group (42.7 ± 0.02). 
Moreover, this effect was also observed in the MMP depo-
larization assay (Figure 3B), where CSf (1 and 6 mg/mL) 
reduced the MMP depolarization (P < 0.001, 34.1 ± 0.02 
and 54.6 ± 0.03, respectively) induced by 6-OHDA (99.8 
± 0.02). However, CSf was not able to return the MMP to 
basal levels (1.7 ± 0.001). 
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action of a SP from S. filiformis (5 mg/mL) when tested in 
ABTS (2,2′-azino-bis-3-ethylbenzo thiazoline-6-sulfonic 
acid) and FRAP (ferric reducing power) assays. However, 
its activity was absent in the DPPH assay. According to 
the authors, due to the limitations of each antioxidant 
assay, the extraction method chosen might lead to under-
estimation or undetectability of the radical scavenging 
activity of SPs. Considering these limitations, it is worth 
mentioning that four different assays were performed in 
the present study. Moreover, and interestingly, the CSf (1 
mg/mL) showed potential for H2O2 scavenging capacity.
Cellular models have been proportioned to investigate 
molecular and physiologic findings related to several 
pathogeneses, including those in PD studies. In previ-
ous studies, SPs showed no toxic effects when analyzed 
in both in vitro and in vivo models [38-44]. Mehrban 
et al. [45] reported non-cytotoxic effects induced by 
ɩ-carrageenan on 3T3 cells. Therefore, it was also decided 
to include the 3T3 cell line as a toxicological control. 
In the present study, our data suggest that CSf does not 

induce a cytotoxic effect, corroborating with previous in 
vitro cytotoxic studies performed on 3T3 and other cell 
lines, such as colon epithelial cells derived from HT-29 
(colorectal adenocarcinoma), HCT-8 (human ileocecal 
colorectal adenocarcinoma), Caco-2 (human colorectal 
adenocarcinoma), and HepG2 (human hepatoma) [45, 46]. 
Moreover, the CSf seems to stimulate the viability of 3T3 
cells in the present study. According to Sun et al. [47], 
SPs (such as heparin, chondroitin sulphate, λ‐carrageenan, 
and dextran sulphate) act on fibroblast growth factors and 
protect them from denaturation. In addition, the CSf did 
not promote toxic effects on SH-SY5Y cells. Thereby, the 
findings shown here align with previous studies, which 
suggest that the use of CSf is pharmacologically safe on 
the cells analyzed, and its presence in the cell culture can 
promote an increase in the viability of fibroblast cells. 
Recently, neuroprotective activities of SPs isolated from 
seaweeds have been reported in the literature [44, 48-50]. 
However, few studies have focused on the application 
of carrageenans in neurodegeneration models. Equally 

http://www.antpublisher.com/index.php/APT/index

76  Ricardo Basto Souza, et al.

R
E

SE
A

R
C

H

Figure 3. Neuroprotective effects of CSf in 6-OHDA-induced neurotoxicity model. (A) MTT assay, (B) MMP depolarization assay, (C) caspase-3 
assay, and (D) H2O2 generation, respectively. In Figure 3A, seven concentrations of CSf were evaluated in the presence of 100 µM of the neurotoxin 
6-OHDA. The most effective concentrations identified were subsequently analyzed further and are presented in Figure 3B, C, and D. Figure 3C and D 
also include results obtained in the absence of the neurotoxin. The values correspond to mean ± SEM. One-way ANOVA, Bonferroni test. #P < 0.05 
and ###P < 0.001, respectively, in relation with control group. *P < 0.05, **P < 0.01, and ***P < 0.001, respectively, in relation with 6-OHDA group.
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to the SH-SY5Y cell-line, the neurotoxin 6-OHDA has 
been useful to carrying out a widely recognized model 
for experimental PD scientific studies [3, 4, 7, 51]. Mi-
tochondrial dysfunction has been shown to be related to 
the development of PD pathogenesis [52]. Actually, the 
mitochondria are the main target of 6-OHDA, which leads 
to the membrane permeabilization of this organelle and 
consequently to an apoptotic cascade in neuronal cells 
[53]. Our findings agree with previously reported studies 
in the literature showing the mitochondrial protective ac-
tion stimulated by SPs [16, 29, 54]. Furthermore, our data 
suggest that ɩ-carrageenan used in this study has a supe-
rior effect on mitochondrial protection, when compared 
with κ-carrageenan isolated from red marine alga Hypnea 
musciformis in study by Souza et al. [29]. According 
to Ma et al. [55], the sulphate content in SPs is directly 
related to the improvement of mitochondrial protection. 
Consequently, the higher sulphate content in ɩ-carrageenan, 
in relation to the κ-carrageenan, was possibly responsible 
for the superior effect observed. Hence, our data suggest 
that ɩ-carrageenan not only shown a protective activity on 
mitochondria but also has a superior effect compared to 
κ-carrageenan. 
The endoprotease caspase-3 has an apoptotic function 
that contributes to cell death by degrading proteins and it 
has been associated to neurodegenerative diseases, such 
as Alzheimer’s disease and PD [49, 56]. Sato et al. [12] 
reported that SPs possess a capacity to modulate cas-
pase-3 activity. Therefore, the neuroprotective effect of 
the CSf on caspase-3 activity was investigated. In the last 
year, SPs from seaweeds have been reported to regulate 
caspase-3 activity in in vitro models [16, 29, 49, 57]. For 
instance, Wei et al. [49] showed that k-carrageenan found 
in marine red algae can modulate the caspase-3 pathway 
and decrease cellular apoptosis induced by fragment of 
beta-amyloid peptide. Similarly, a k-carrageenan (H. Mus-
ciformis) has shown an antiapoptotic activity in SH-SY5Y 
cells treated with 6-OHDA [29]. Corroborating these 
previous studies, the present findings suggest that the CSf 
mediates antiapoptotic activity against 6-OHDA-induced 
cell death through caspase-3 modulation.  
The neurotoxic effect of 6-OHDA results from oxidative 
stress induced by the production of reactive oxygen spe-
cies (ROS) through its auto-oxidation after being taken up 
by the neuron via the dopamine transporter [58]. Accord-
ing to Kick et al. [59], a surplus of endogenous ROS such 
as H2O2 is associated with mitochondrial disturbances, 
leading to apoptotic factors release, caspase cascade acti-
vation, and finally, cellular death. Therefore, the balance 
between the generation of H2O2 and its neutralization by 
endogenous cellular defense mechanisms is one important 
factor in cellular homeostasis [60]. In the present study, 
the CSf attenuated H2O2 generation induced by 6-OHDA 
exposure without inducing cytotoxicity on normal cells. 
Corroborating with the present data from the H2O2 radi-
cal scavenging assay, these findings suggest that the CSf 
exhibits a homeostatic capacity, downmodulating the en-
dogenous H2O2 generation induced by neurotoxin to basal 
levels in SH-SY5Y cells.

Conclusions

The current investigation has provided insight into the 
pharmacological potential of CSf demonstrating neuropro-
tective effects in a neurotoxic model through the modula-
tion of H2O2 generation and caspase-3 activity to basal 
levels, as well as protection of the mitochondria. Addi-
tionally, CSf exhibited no cytotoxicity in the tested cells, 
suggesting its potential pharmacological safety for use in 
the development of novel treatments for neurodegenera-
tive disorders. Although, the presented results are promis-
ing, additional more complex model studies are necessary 
to provide deeper insights into the mechanisms of action 
and potential translational applicability of CSf.
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