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Abstract
Early changes in cerebrovascular hemodynamics and endothelial function can contribute to altered cogni-
tive function and systemic vascular stiffness later in life. Accordingly, vascular pathology accompanies the 
mechanisms underlying aging. The development of chronic cerebral hypoperfusion, which leads to a lack of 
blood flow to the brain, is a common trait despite the various and complex pathogenic mechanisms caus-
ing these vascular alterations. Drugs or other bioactive compounds can be incorporated into a “high density 
lipoprotein-like” (“HDL-like”) lipid nanocarrier to create a multifunctional “combination therapeutic” that can 
target cell-surface scavenger receptors, primarily class B type I (i.e., SR-BI). The enhanced endocytosis of the 
nanocarrier’s drug contents into various target cells, made possible by this proposed (biomimetic-nanocarrier) 
therapeutic vehicle, increases the likelihood that this multitasking “combination therapeutic” will be more ef-
fective at various stages of dementia.
Keywords: Cognitive impairment, dementia, lipid nanoparticles, nanocarrier, nanoemulsion, scavenger recep-
tors, targeted delivery
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Introduction

Emerging evidence from numerous animal models indi-
cates that in the development of Alzheimer’s disease, cere-
brovascular dysfunction frequently precedes both cogni-
tive decline and the start of neurodegenerative alterations 
[1-4]. In light of this fact, mixed pathology, which dis-
plays both Alzheimer’s disease and vascular abnormalities 
has been identified as the most frequent cause of clinical 
dementia in elderly people. In such mixed dementias, pro-
tein tau tangles (in neurons) and [extracellular amyloid-
beta (Aβ) protein] plaques are accompanied by vascular 
changes [1, 5]. Published data from experiments using 
transgenic mice and observations in the clinic by MRI 
scans or at autopsy by neuropathological evaluation pro-
vides evidence that tau pathological changes (in neurons) 
can impact brain endothelial-cell biology, which in turn 

induces changes in the brain’s microvasculature (including 
abnormal spiraling morphologies, reduced blood vessel 
diameters, and increased overall blood vessel density in 
the cerebral cortex), separate from the effects of senile 
plaques on vasculature [1]. In comparison, senile plaques 
(often regarded as the classic lesions of Alzheimer’s dis-
ease) are extracellular deposits mostly composed of in-
soluble aggregates of Aβ protein  fibrils and are infiltrated 
by reactive microglia and astrocytes. Aβ fibrils cause the 
production of neurotoxins like reactive oxygen species, 
by microglia, and have a damaging effect on neurons. Mi-
croglia have been implicated as scavenging cells that are 
responsible for clearing Aβ fibril deposits of Alzheimer’s 
disease. Accordingly, microglial scavenger receptors have 
already been described as novel targets for therapeutic in-
terventions in Alzheimer’s disease [5].

Targeted nanotherapy for late-onset dementia

A breakdown of the blood-brain barrier (BBB) resulting 
from structural changes to the cerebral microvasculature 
are examples of the vascular abnormalities connected to 
small-vessel illness. Therefore, it is not unexpected that 
numerous epidemiological studies have found a significant 
overlap between the risk factors for late-onset Alzheimer’s 
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disease and small-vessel cerebrovascular illness [3].
As specifically regards drug targeting, it has been docu-
mented repeatedly that cell-surface scavenger receptors, 
primarily class B type I (i.e., SR-BI), allow for the phar-
macological targeting [3, 6-13] of endothelial regulation 
and/or repair [13-15]. Moreover, the earlier reviewed [3, 
6] “lipid-coated microbubble/nanoparticle-derived (LCM/
ND)” nanoemulsion can conceivably function as a tar-
geted, apoA-I-based (SR-BI mediated) therapeutic agent
for common (late-onset) dementias. Specifically, this ex-
pectation is based on the fact that SR-BI has already been
identified as a major receptor for high-density lipoprotein
or HDL [with their major apolipoprotein (apo) A-I] [16-
18]. Such LCM/ND nanoemulsions may well be able to
partially imitate the heterogeneity of HDL particles due
to similarities in the lipid content, which has been docu-
mented previously between HDL and these nanoemulsion
(drug-carrier) particles [3, 5, 6].
The ongoing discoveries of cerebrovascular pathology
[5, 6, 19-29] and an apparent endothelium dysfunction
[3, 17, 18, 25, 30-36] in both Alzheimer’s disease and its
major risk factors [5, 6, 29-41] provide additional impetus
for this particular targeted delivery approach, which uses
the proposed LCM/ND lipid nanoemulsion for treating
the more prevalent (late-onset) dementias. Adding cer-
tain drug molecules to the LCM/ND lipid nanoemulsion
type, which are known to be an effective drug carrier [3,
42, 43], would make the following possible: multiple cell
types, which are often implicated in Alzheimer’s disease
[6], can be simultaneously nanotargeted via cell-surface
SR-BI [42, 43].

Biobased lipid nanoemulsion: size distribution 
and safety studies

Physical characterization of the actual size distribution 
of the LCM/ND lipid nanoemulsion particles (to be used 
for treating late-onset dementias) has already been exten-
sively explored [3, 5]. In these studies, the scattered light 
was measured using five distinct optical particle counters 
(different models) that were all produced by Particle Mea-
suring Systems (Boulder, CO). Given that all of the data 
were essentially identical, it can be concluded that the 
LCM/ND lipid nanoemulsion did not vary in particle size 
under the various concentration settings. Over a period of 
time (at least one month), there was no discernible change 
in the size distribution [3]. When measured with optical 
particle counters, this nanoemulsion type contains close to 
10 billion particles (< 0.1 μm) per milliliter. Ninty percent 
or more of the nanoemulsion particles had diameters of 
less than 0.2 μm.
The risk of embolism is negligible because neither in vi-
tro nor in vivo investigations have demonstrated that the 
LCM/ND lipid nanoemulsion particles aggregate or co-
alesce into any “superparticle or microbubble-like” struc-
ture more than 5 µm [3]. The acute intravenous LD50 for 
two animal species (rabbits and dogs) was determined to 
be greater than 4.8 mL/kg. Furthermore, no overt toxicity 

or mortalities were observed at a dose of 4.8 mL/kg [3]. 
Using the same (isotonic) lipid nanoemulsion agent, it was 
determined in additional animal (range-finding subchronic 
intravenous) toxicology studies [3] that the following tox-
icology outcomes were seen at intravenous doses of 0.14 
mL/kg given three times a week for six weeks (in rats) 
and 0.48 mL/kg given three times a week for three months 
(in rabbits): the blood chemistry, liver functions, hema-
tology, and coagulation profile did not change adversely, 
and neither did the the histology of the adrenals, bladder, 
brain, heart, kidney, liver, lungs, marrow, pituitary, spleen, 
testes, thyroid, and ureters [3].

Biobased LCM/ND nanoemulsion type consists 
of lipid cubic phases

A noteworthy lipid cubic phase (i.e., Fd3m) is created by 
a variety of lipid mixtures, when dispersed in water, and is 
based on packings of discrete inverse micellar aggregates 
[3, 44-50]. The LCM/ND lipid nanoemulsion (for in-
tended use in treating late-onset dementias) is particularly 
pertinent to the dispersed Fd3m cubic phase because both 
of these lipid structures frequently contain cholesterol and 
three types of (saturated) glycerides, namely tri-, di-, and 
monoglycerides [51, 52].
Given that these nanoemulsion particles are expected to 
adsorb apoA-I (see Sect. 2, paragr. 2), it is plausible that 
they will be effective at their intended targets [3]. Again, 
when the aforementioned information is combined with 
the known heterogeneity of HDL particles and the well-
documented multiligand capability of SR-BI, this receptor 
emerges as the top candidate (of all lipoprotein receptors) 
for major involvement in the enhanced endocytosis of 
LCM/ND nanoemulsion particles into, and transcytosis 
across, the endothelial cell layer of the BBB [3].

Concluding remarks

The use of lipid nanocarriers, such as nanoemulsions, to 
circumvent the barriers that prevent medication transport 
across the BBB has very recently brought these materials 
back into the spotlight. As reviewed by Ilic et al. (in 2023) 
[53], among the various strategies studied to overcome 
the low-water-solubility of various central nervous sys-
tem (CNS)-active drugs as well as surmount the obstacles 
in BBB crossing, lipid-based nanoparticles have been 
recognized as an excellent platform for brain targeting. 
Conventional dosage forms are associated with a lack of 
targetabiliity, often resulting in low concentrations within 
the brain and, hence, a suboptimal therapeutic outcome 
[53]. In contrast, the “HDL-like” lipid nanoemulsion type 
(also referred to as “LCM/ND nanoemulsions” [3, 5, 6] 
) displays a natural tendency to target SR-BI receptors 
(cf. above) and, therefore, would likely act to increase 
the total concentration of (targeted) drug in the brain pa-
renchyma due to this nanocarrier’s direct interaction with 
SR-BI receptors on the BBB. Additionally, this particular 
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targeting behavior can facilitate the drug’s enhanced en-
docytosis into various target cells [3, 5, 6, 54-56], which 
in turn raises the possibility this “HDL-like” nanoemul-
sion will be more effective at different stages of late-onset 
dementia (cf. [28]) when used as a multitasking (drug-
carrying) therapeutic vehicle.
In 2022 and 2023, several groups of investigators have 
published arguments/reviews which support using such 
a multi-factorial approach for the reversal of cognitive 
decline in late-onset dementia and mild cognitive im-
pairment: for example, Tarozzi and Angeloni [57] stress 
that neurological disorders are characterized by a multi-
factorial nature that requires treatment with molecules/
agents capable of targeting multiple pathogenic events. 
In addition, Powers and Sahoo [58] point out that SR-BI 
has been implicated in modulating diabetes risk; this fact 
is noteworthy since dyslipidemia, diabetes, and athero-
sclerotic cardiovascular disease are commonly comorbid 
conditions and are all risk factors for late-onset dementia 
with aging [58, 59]. Lastly, as specifically concerns late-
onset Alzheimer’s disease and mild cognitive impairment, 
Rao et al. [60] report that studies have demonstrated that a 
multi-therapeutic approach is needed to improve/alleviate 
metabolic abnormalities and Alzheimer’s disease-associ-
ated cognitive decline. A single-drug approach may delay 
the progression of memory loss but to date has not pre-
vented or reversed it. Thus, a multi-therapeutic program 
that simultaneously targets multiple factors underlying the 
Alzheimer’s disease-network may be more effective than 
a mono-therapeutic approach. Accordingly, this group of 
investigators further point out that several recent clinical 
trials and observational studies showed superior outcomes 
when a multitude of potential contributing pathogenic 
pathways was addressed simultaneously [60].
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