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Abstract
Oxidative stress is one of the major causes of most age-dependent neurodegenerative disorders. Neurons ac-
cumulate oxidative damage over time due to post-mitotic cells. Thus, modulation of oxidative stress is essential 
to overcome these disorders. Molecular hydrogen (H2) has great potential for treating various diseases and 
improving quality of life by exerting multiple functions including anti-oxidation, anti-inflammation, and energy 
metabolism promotion. Among these functions, H2 activates a transcription factor, nuclear factor erythroid 
2-related factor 2 (Nrf2) to enhance the transcription of transcribe a broad range of anti-stress enzymes,
including antioxidant enzymes. There was an elusive contradiction between H2 and Nrf2 because Nrf2 is ac-
tivated in response to oxidative stress, whereas H2 has a reducing potential. The target molecule for H2 has re-
cently been identified as the oxidized form of Fe-porphyrin conjugated with the -OH group (PrP-Fe(III)-OH). As
the initial step, the hydroxyl radical (•OH) oxidizes heme (PrP-Fe(II)) to form PrP-Fe(III)-OH. Then, H2 reacts
with PrP-Fe(III)-OH to produce PrP-Fe(III)-H and H2O. In turn, Fe(III) with H has the potential to act as an elec-
trophile to oxidize Kelch-like ECH-associated protein 1 (Keap1), resulting in activating Nrf2. Thus, when the
original highly damaging electrophilicity of •OH is buffered by H2 and its target porphyrin, the electrophilicity
provided by •OH can indirectly activate Nrf2 to reduce oxidative stress. Even without lowering the dosage, the
effect of alleviated potent is considered to be hormesis-like. This “Therapeutic Brief” propose that the allevi-
ated oxidative potent of •OH functions to activate Nrf2 as hormesis-like.
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Introduction

Molecular hydrogen (dihydrogen; H2) is an inert molecule 
in the absence of a catalyst. It has long been believed 
that H2 has no biological function in mammalian cells 
because mammals lack the genes encoding hydrogenases 
that catalyze reactions involving H2 [1, 2]. In 2007, this 

concept was overturned by publishing the article entitled 
“Hydrogen acts as a therapeutic antioxidant by selec-
tively reducing cytotoxic oxygen radicals” [3]. This paper 
served as a trigger for the initiation of a new field of “hy-
drogen medicine and agriculture” [4, 5]. Subsequently, in 
addition to its antioxidant action, H2 has been revealed to 
exert multiple functions such as anti-inflammatory, anti-
allergic, anti-cell death, and metabolic stimulating effects 
by modulating various intracellular signal transductions [5, 
6]. H2 has no adverse effects, leading to extensive clinical 
studies for various diseases [5, 6]. In addition, H2 not only 
improves patients with various diseases, but also supports 
the quality of life (QOL) of healthy people in various 
fields such as healthcare, sports, and beauty [5]. In 2014, 
the US Food Drug Administration (FDA) approved H2 as 
generally recognized as safe (GRAS), allowing hydrogen-
infused water to be marketed as a drink. In 2016, H2 gas 
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inhalation therapy was approved by the Japanese govern-
ment as an advanced treatment for post-cardiac arrest 
syndrome [7]. Furthermore, H2 is beneficial not only to 
animals and humans but also to higher plants. Therefore, 
H2 can have a strong impact on agriculture [8].
However, the molecular mechanism by which H2 exerts 
multiple functions remained unclear. The current Thera-
peutic Brief will discuss and propose a molecular mecha-
nism by which H2 with the hydrogen-targeted porphyrin 
activates the transcription factor, nuclear factor erythroid 
2-related factor 2 (Nrf2) to alleviate oxidative stress, sug-
gesting a hormesis-like effect.

H2 selectively reacts with hydroxyl radicals in 
living cells

Oxidative stress is derived by excessive generation of 
reactive oxygen species (ROS) such as superoxide anion 
radical (•O2

-), hydrogen peroxide (H2O2), nitric oxide 
(NO), and hydroxyl radical (•OH) [9-10]. As neurons are 
post-mitotic cells, neurons accumulate oxidative damage 
over many years. However, ROS such as H2O2 and •O2

- 

and NO play important physiological roles in signaling 
cascades and biological processes such as cell prolifera-
tion, differentiation, apoptosis, and immunomodulation 
[11-14], and thus, excessive antioxidant intake is not ben-
eficial and induces mortality as published [15, 16].  
Molecular hydrogen (H2) selectively reduces highly toxic 
ROS, •OH and peroxynitrite (ONOO-), but neither •O2

-

, H2O2, nor NO [3]. In cell culture experiments, H2 de-
creased the fluorescence signal of 3’-p-(hydroxyphenyl)
fluorescein (HPF) when oxidative stress was induced in 
various ways [3]. HPF is an intracellular marker for •OH 
[17, 18]. Decrease in this fluorescent signal by H2 was not 
only observed in cultured cells, but also in various tissues 
as shown in testicular radioprotection [19], hematopoietic 
stem cell damage by total body irradiation [20], and hy-
peroxia in cultured cells [21], lung hypoxia/reoxygenation 
[22], retinal ischemia-reperfusion [23], and retinal sonica-
tion [24]. 
H2 can be infused into water (hydrogen water) up to a 
maximum of 0.8 mM at atmospheric pressure. After drink-
ing H2 water or inhaling H2 gas, measuring the H2 content 
revealed that H2 is consumed in the human body [25, 26]. 
Deuterium gas (D2) was used in rats as a metabolic tracer 
to monitor D2 oxidation, indicating that molecular hydro-
gen is indeed oxidized in vivo [27].
Thus, H2 was confirmed to decrease cellular •OH in a va-
riety of ways across cell types and tissues although •OH 
is the most oxidative molecule to damage the cell compo-
nents in a chaotic manner [10].
By the way, in homogeneous aqueous kinetics, the reac-
tion rate of •OH with H2 is much slower (the kinetic rate is 
0.35 × 10-8 M-1s-1) than those with other antioxidants [28]. 
For example, •OH reacts with glucose and glutathione 
with kinetic rates (15 × 10-8 M-1s-1), and (230 × 10-8 M-1s-

1), respectively [29]. The other biomolecules also react 
with •OH much faster than H2. The contradiction between 

homogeneous aqueous solutions and living organisms has 
been debated for a long time.
Although H2 cannot react with most molecules without 
a metal catalyst, effective amounts of metals such as Cu, 
Fe, Ni, and Pt are unlikely to be present in living cells. 
In addition, there is no report indicating the discovery of 
an organo-catalyst for H2. Despite extensive worldwide 
research, it was hard to discover a catalyst that facilitates 
the reaction of H2 with •OH. An H2-target molecule as 
described below has recently been identified, providing a 
clue to explain the underlying contradiction of H2.

Aging is associated with an increased incidence 
of neurodegenerative diseases

Aging is associated with an increased incidence of neuro-
degenerative disorders. This is because neurons accumu-
late oxidative damage due to post-mitotic cells over a long 
period [30]. Oxidative stress is one of the leading causes 
of most neurodegenerative disorders [31, 32]. Several 
animal studies indicate that H2-treatment is potentially 
applicable to alleviate neurodegenerative disorders and 
improve the quality of life in the elderly [33-37]. Thus, H2 
is expected to ameliorate aging-related neurodegeneration. 
In particular, overcoming Alzheimer’s disease (AD) is one 
of the most important challenges in the world’s aging so-
ciety [38].
It has been shown that drinking H2 water reduces oxida-
tive stress and ameliorated cognitive deficits in AD model 
mice [39]. Subsequently, a randomized, placebo-con-
trolled, double-blind clinical trial was conducted on sub-
jects with mild cognitive impairment (MCI), who drank 
0.6 mM H2 water (approximately 300 ml per day) for 1 
year [39]. A sub-analysis showed that subjects with the 
apolipoprotein E (APOE4) genotype, a well-known ge-
netic factor for AD [40, 41], were significantly improved. 
Improvement was assessed by the Alzheimer’s Disease 
Assessment Scale-Cognitive Subscale (ADAS-cog), one 
of the most reliable ways to assess cognition [42, 43].
H2 inhalation has been applied in several clinical areas [5, 
7, 44-46]. The most important feature of H2 gas inhalation 
therapy is that it is non-cytotoxic and safe for humans, as 
approved in Phase I clinical trial [47].
A patient with severe Alzheimer’s continued to inhale 3% 
hydrogen gas twice for one hour a day for two years. Dif-
fusion tensor imaging (DTI) [48, 49] then visualized the 
activation of neurons of the patient, and urinary and fecal 
incontinence was improved [38]. This case report is of 
value even for a single case, as it is commonly understood 
that patients with severe AD are irreversible [38].

H2 activates Nrf2 to function to reduce oxida-
tive stress

Nrf2 transcribes the genes encoding several antioxidant 
enzymes to protect cells against oxidative stress [50-51]. 
Moreover, Nrf2 contributes not only to the reduction of 
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oxidative stress, but also to widespread fields, including 
toxicology [52], oncology [53], inflammation [54], isch-
emia stroke [55], and the aging process [56]. Nrf2’s targets 
are the genes encoding NAD (P) H quinone oxidoreduc-
tase 1 (Nqo1), thioredoxin, reductase 1 (TXNRD1), heme 
oxygenase-1 (HO-1), glutathione S-transferase (GST), 
and so on [50-51]. Nrf2 is maintained in an inactive form 
in the cytosol when it forms a complex with the Kelch-
like ECH-associated protein 1 (Keap1). Upon oxidation of 
the essential cysteine residues of Keap1 by electrophiles, 
Nrf2 is released from Keap1 and then translocated into the 
nucleus, enabling the transcriptions [50-51].
H2 can induce the activity of Nrf2, as shown in many pub-
lications. In Nrf2 knockout mice, the effects of H2 were 
at least partially attenuated, in protecting various cells 
and tissues in response to various stressors [57]. These 
findings are consistent with subsequent publications that 
Nrf2-activation is one of the antioxidant effects of H2 [58-
69]. Therefore, it is concluded that the activation of Nrf2 
is involved in one of the H2 functions.
As a molecular mechanism, it is unlikely that H2 directly 
influences Nrf2. H2 must indirectly activate Nrf2 through 
multiple steps. One idea was proposed that H2 enhances 
mitochondrial respiratory activity to generate excess ROS, 
which in turn oxidizes intracellular Keap1 to release Nrf2 
[70]. Alternatively, H2 opens mitochondria-(ATP) K+ 
channels [71, 72] to induce ROS [73]. However, although 
there is no doubt that H2 activates Nrf2, there is no direct 
evidence that mitochondria-derived ROS can oxidize the 
residues of cytosolic Keap1. Moreover, an elusive contra-
diction exists between Nrf2 activation and H2; activation 
of Nrf2 requires Keap1 oxidation, whereas H2 has a reduc-
ing potential.

Target discovery of hydrogen molecules

A break-through paper entitled “Fe-porphyrins: redox-re-
lated biosensors of molecular hydrogen” has recently been 
published [74], showing that the molecular target/biosen-
sor for H2 is the oxidized form of Fe-porphyrins (designate 
“hematin”). This paper has shown the discovery that ad-
dresses the fundamental questions about the mechanisms 
in which H2 is involved.
Hematin is an oxidized form of Fe(III)-containing por-
phyrin (PrP) converted from Fe(II)-containing porphyrin 
(heme) [75, 76]. This breakthrough paper showed a novel 
reaction showing that H2 replaces the hydroxy group (-OH) 
conjugated to hematin Fe(III) with the hydrogen group 
(-H). The atom H of this -H group should behave as a hy-
dride (H-) and, due to its high reactivity, •OH was rapidly 
converted to H2O by this catalyst (Figure 1).
Thus, heme (PrP-Fe(II)) has been shown to act as a cata-
lyst for the following reaction (Figure 1).
(1) PrP-Fe(II) + •OH → PrP-Fe(III)-OH
(2) PrP-Fe(III)-OH + H2 → PrP-Fe(III)-H + H2O
(3) PrP-Fe(III)-H + •OH → PrP-Fe(II) + H2O
The overall equation (4) indicates that heme (PrP-Fe(II)) 

catalyzed the following reactions:
(4) 2 •OH + H2 → 2H2O
As noted above, the unresolved discrepancy between 
aqueous and live-cell reactions can be explained by the 
catalytic reaction according to the above equations (2) and 
(3). 
At the same time, H2 can reduce the oxidized porphyrin 
with Fe(III) to restore heme, the reduced form of Fe(II).

Proposal of a mechanism to elucidate the 
mechanism by which reducing H2 activates 
Nrf2

Porphyrins are distributed everywhere inside and outside 
the living cells in the body. Heme is present in hemoglobin 
in the blood and myoglobin in muscles and is responsible 
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Figure 1. Fe-porphyrin catalyzes the reaction of H2 with the hydroxyl 
radical.
(Equation 1) PrP-Fe(II) + •OH → PrP-Fe(III)-OH
(Equation 2) PrP-Fe(III)-OH + H2 → PrP-Fe(III)-H + H2O
(Equation 3) PrP-Fe(III)-H + •OH → PrP-Fe(II) + H2O
The formal name of Hematin PrP-Fe(III)-OH is ferriprotoporphyrin IX 
hydroxide. 

for delivering molecular oxygen (O2) throughout the body 
[77]. Thus, heme is frequently exposed to O2 or H2O2, and 
thus, Fe(II) of heme can frequently catalyze the formation 
of •OH by the Fenton reaction or its mimic reactions [78-
80]. Porphyrins are located as cytochromes in the electron 
transport chain of the mitochondrial inner membrane, and 
play a role in electron transport by converting Fe(II) to/
from Fe(III) [81]. In the intracellular cytosol, the antioxi-
dant enzymes such as catalase [82] and peroxidase [83], 
P450 [84], and nitric oxide (NO) synthase [85] have por-
phyrins as an essential component [86]. These porphyrins 
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with Fe(II)/(III) act as mediators of redox reactions and 
are subject to oxidative stress. 
Hematin (PrP-Fe(III)-OH) is converted from hemin (PrP-

effect relationship for any substance [93].
•OH is the most oxidative molecule that caused damage to 
biomolecules [10], but, the strong electrophilicity of •OH 
can be alleviated through stepwise reactions in the pres-
ence of H2 and porphyrin.
Lowering the concentration of a toxic substance is reduc-
ing its toxicity. It is proposed that even without lowering 
the dosage, the effect of alleviated strong potent is consid-
ered to be hormesis-like.
Once the original strong electrophilicity of •OH is trans-
ferred to PrP-Fe(III)-OH and PrP-Fe(III)-H, it is possible 
that the alleviated oxidative potent contributes to the acti-
vation of Nrf2 as a hormesis-like effect.
The current proposal needs to be examined in more detail 
in the future.

Conclusion 

H2 acts as a therapeutic antioxidant [3] and activates Nrf2, 
which transcribes antioxidant enzymes to reduce oxidative 
stress and protected cells against various stresses. There 
was an unresolved contradiction between H2’s reductive 
property and Nrf2’s requirement of oxidative stress for its 
activation. The target molecule for H2 has recently been 
identified as the oxidized form of Fe-porphyrin conju-
gated with the OH group (PrP-Fe(III)-OH) [74]. H2 and 
the H2-targeting porphyrin can buffer the highly oxidizing 
electrophilicity of •OH. When the original •OH’s oxida-
tive and harmful electrophilicity is alleviated, the resultant 
electrophilic potent may contribute to the activation of 
Nrf2 as a hormesis-like effect.
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