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The critical role of macrophages in ovarian cancer treatment
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Abstract
The occurrence of and poor prognosis associated with ovarian cancer (OC) pose a serious threat to the health 
of middle-aged and elderly women. Thus, there is an urgent need to understand the pathogenesis of OC and 
establish effective therapeutic measures. The OC microenvironment is thought to facilitate malignancy, as well 
as close relationships among several types of cells. Macrophages are known to be present in the OC micro-
environment. They are usually the M1 pro-inflammatory or M2 anti-inflammatory subtype and contribute to 
the microenvironment via secreting cytokines. The poor prognosis associated with OC is closely related to the 
negative regulation of M2 macrophage polarization, which contributes to the immune escape of tumor cells 
and maintains the malignant growth and distant metastasis of OC cells. In this review, we have focused on the 
involvement of macrophages in OC during the aging process and the macrophage-based therapeutic strategies 
for OC.
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Introduction

Ovarian cancer (OC) is the most lethal type of malig-
nant tumor of the female reproductive system [1]. The 
malignant progression of OC is associated with multiple 
elements, including gene mutation, ovulation frequency, 
an abnormal host immune response, oncogene activation 
and silencing of tumor suppressor genes, and interaction 
of tumor cells with growth factors and cytokines in the 
tumor-associated microenvironment [2, 3]. Patients with 
OC have lower progression-free survival (PFS) and over-
all survival (OS) rates due to the lack of effective methods 
for early diagnosis. Cytoreductive surgery (CRS) and 
chemotherapy with paclitaxel/platinum are the most com-
mon therapeutic treatments; however, 70% of OC patients 
are at risk of recurrence and chemotherapy resistance [4]. 
Among the many cytological mechanisms involved in the 
malignant progression of OC, macrophage polarization is 
widely considered an important component.

Macrophages are a class of natural immune cells with a 
variety of physiological functions [5]. Upon stimulation, 
macrophages can be polarized into the M1 and M2 phe-
notypes. The characteristics of several subtypes of mac-
rophages are displayed in Table 1 [6-20]. The tumor-as-
sociated macrophages (TAMs) found in malignant tumor 
microenvironments are typically M2 macrophages, and 
these regulate tumor growth, migration, and angiogenesis 
by producing a large number of cytokines, growth factors, 
extracellular matrix remodeling molecules, and other mol-
ecules [21]. Previous studies have found that M2 macro-
phage polarization is closely correlated with the malignant 
progression of colon cancer [22], prostate cancer [23], liv-
er cancer [24], thyroid cancer [25], craniocerebral tumors 
[26], pancreatic cancer [27], and other tumors. Therefore, 
regulating the activity and phenotype conversion of mac-
rophages [28-29] is a potential therapeutic strategy for 
OC that could improve the poor prognosis associated with 
OC. This review focuses on the role macrophage polar-
ization plays in OC during aging and treatment strategies 
based on macrophage modulation.

The role of macrophages in the poor prognosis 
associated with ovarian cancer (OC)

OC has the highest mortality rate of all the malignant 
tumors of the female reproductive system. Macrophages 
play important roles in the OC microenvironment; they af-
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fect the host’s ability to defend against microbes, viruses, 
and parasites, as well as against tumor cells. OC TAMs 
are generally the M2 phenotype, contributing to the occur-
rence, development, distant metastasis, and angiogenesis 
of malignant tumors and hence the poor prognosis associ-
ated with OC [30]. It has been demonstrated that large 
proportions of CD163+ M2 macrophages are present in 
epithelial OCs and are related to poor prognosis [31]. In 
addition, a high M1 to M2 macrophage ratio in OC tis-
sue is associated with early diagnosis and long survival of 
tumor patients [32]; and the reverse has also been shown 
[33].

larization in the tumor microenvironment through CCL2/
Monocyte Chemotactic Protein 1 (MCP-1) signaling [40]. 
It has also been shown that TNF-α, CCL22, and Chemo-
kine (C-X-C motif) ligand 12 (CXCL12) secreted by OC 
cells induce polarization of M0 macrophages (monocyte) 
into M2 macrophages in the tumor microenvironment [41]. 
In addition, the expression of the transmembrane protein 
semaphorin 4D (SEMA4D) was found to be higher in an 
OC cell line and the cell culture supernatant than in nor-
mal human ovarian cells and the cell culture supernatant, 
and peripheral blood mononuclear cells (PBMCs) were 
found to tend to differentiate into M2 macrophages when 

stimulated by recombinant soluble SEMA4D [42]. It is 
also likely that Cyclooxygenase-2 (COX-2) derived from 
OC stem cells affects M2 macrophage polarization via 
activation of the Janus kinase (JAK) and COX-2/ prosta-
glandin E2 (PGE2) signaling pathways [43-45].

Effects of macrophages on the malignant progression 
of different forms of OC 

Macrophages play different roles in several types of his-
tologically classified OC. TAM infiltration is most com-
mon in serous and mucinous OC, and the infiltration of 
M2 macrophages predicts a poor prognosis for serous OC 
cases [46]. Serous OC accounts for more than 70% of all 
epithelial OCs. Ciucci et al. found that patients with low-
grade serous OC had less infiltrating CD68+ macrophages 
and M2 CD163+ macrophages in tumor tissues than pa-
tients with high-grade serous OC [47]. These results sug-
gest that the differentiation activity of M2 macrophages is 
related to the occurrence, development, and metastasis of 
different types of histologically classified OC [48]. 
In women, smoking can activate nicotinic receptors, and 
this activation has been shown to polarize macrophages 
into the M2 phenotype, thereby increasing the risk of mu-
cinous OC [49]. However, the relationship between smok-
ing, macrophage polarization, and the risk of mucinous 
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Table 1. The differences among several subtypes of macrophages.

Inducers Cell expression markers Cytokine and chemokine
production References

M1a

IFNc, LPS, TNF

Common markers: CD80, CD86, CD68, 
MHC-II, IL-1R, TLR-2, TLR-4, iNOS, IL10, 
IL-12; 
M1a subtype without CD206 or MGL-1, M1b 
subtype with CD206 and MGL-1

TNF-α, IL-1β, IL-6, IL-12, IL-23, IL-27, CXCL9, 
CXCL10, CXCL11, CXCL16, CCL5, Arg-2, 
iNOS, ROS

[5-10]
M1b

M2a IL-4, IL-13
MR, AMACI, MHCII, ArgI, IL-1Ra, IL-1R II, 
FIZZ1, Ym1/2

TGFβ, IL-10, IL-Ra, CCL17, CCL22, CCL18, 
CCL22, CCL24 [11-15]

M2b IC, TLR, IL-1R ligands, 
IL-1β

MR, MHCII, CD86 IL-1β, IL-6, TNFα, IL-10, IL-12, CCL1 [9, 13]

M2c IL-10, Glucocorticoids,
TGFβ

MR, CD163, TLR-1, TLR-8, ArgI IL-10, TGFβ, CCL16, CCL18, 
CXCL13 [16, 17]

M2d
T L R + A 2 R  l i g a n d s , 
adenosine receptor 
ligands

VEGF, TNFα, IL-12, IL-10 IL-10, IL-12, VEGF, TNFα [18, 19]

M3
Arg1, Chi3l3, Ccr2, Cx3cr1, Ccr1, Ccr9; 
without CD11c or CD206 [20]

Potential mechanisms involving M2 macrophages that 
facilitate OC progression

M2 macrophages promote the immune escape of tumor 
cells by releasing immunosuppressive factors in the OC 
microenvironment. For example, during the progression 
of a malignant tumor, macrophages that are stimulated 
with interleukin (IL)-4, IL-10, and IL-13 polarize into the 
M2 phenotype and secrete IL-4, IL-5, and IL-6, which in 
turn induce the progression of angiogenesis, immunosup-
pression, and matrix remodeling [34]. TAMs regulate 
tumor-cell migration in the microenvironment by modu-
lating the secretion of and interactions between epithelial 
growth factor (EGF), tumor necrosis factor alpha (TNF-α), 
and colony stimulating factor-1 (CSF-1) [35]. In the OC 
microenvironment, TAMs promote cell invasion by en-
hancing the activity of c-Jun and (Nuclear Factor-kappa 
B) NF-κB and the upregulation of SR-A [36, 37]. The cy-
tokines and chemokines secreted by OC cells can increase 
macrophage recruitment and polarization [38]. For exam-
ple, it has been shown that leukemia inhibitory factor (LIF) 
and IL-6 secreted by OC cells promote the differentiation 
of macrophages into the M2 phenotype [39]. In another 
study, CCL2 released by epithelial OC cells was found 
to increase the recruitment of macrophages and M2 po-
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OC needs to be further investigated. 
Endometrioid carcinoma and clear cell carcinoma of the 
ovary are mostly caused by endometriosis [50]. A study 
suggested that CDC42+ macrophages may inhibit endome-
triosis in endometrioid carcinoma and clear cell carcinoma 
of the ovary and thus play a role in alleviating malignant 
progression [51]. It has also been shown that glypican-3 
(GPC3), which is specifically expressed in ovarian clear 
cell carcinoma, can inhibit ovarian tumor growth in mice 
by enhancing the proportion of M1 macrophages [52]. 
Furthermore, B7-H4 is expressed on the surface of OC 
cells and is associated with the infiltration of T cells and 
CD14+ macrophages in ovarian clear cell carcinoma but 
not in serous OC and ovarian endometrioid carcinoma 
[53]. 
Despite several studies having shown that M1 macro-
phages have significant anti-tumor effects, Untack Cho 
et al. found that M1 macrophages could promote OC cell 
metastasis by activating the NF-κB signaling pathway 
[54].
Together, these findings suggest that TAMs play important 
roles in the development and progression of OC. Hence, 
the effects of macrophages in different polarization states 
on the malignant progression of different histological sub-
types of OC must be further explored. 

Macrophages can affect ovarian function dur-
ing aging

Immune dysregulation associated with aging affects the 
balance between immune cell subtypes and their relevant 
functions, resulting in the occurrence and progression of 
cancer [55]. Several characteristics of the aging process, 
such as non-infectious low-grade chronic inflammation, 
contribute considerably to age-related pathological chang-
es [56] and functional decline [57]. It has also been shown 
that aging stimulates higher expression of a large number 
of innate immune system macromolecules, cytokines, and 
multi-protein complexes [58]. In addition to their benefi-
cial roles, IL-1β and IL-18 also contribute to the occur-
rence and progression of disease during aging [59]. 
Ovarian aging is a natural process characterized by fol-
licular depletion and a reduction in oocyte quality, which 
result in loss of ovarian function, cycle irregularity, and 
eventually infertility and menopause [60]. Ovarian aging 
can also involve ovarian myocyte inflammation and the 
gradual development of OC [61]. In cases of OC-related 
inflammation, it is critical to maintain the balance between 
the macrophage phenotypes so that it is in favor of protec-
tion against OC rather than in favor of malignant progres-
sion.
Macrophages have the ability to modulate ovarian func-
tion during the aging process due to their roles in follicle 
growth regulation, tissue remodeling during ovulation, 
and corpus luteum formation and regression [62]. Interest-
ingly, in cases where there is poor progression of OC, the 
increased number of macrophages present may indicate 
the critical role these immune cells play during the aging 

process [63]. Additionally, M2 macrophages are the main 
source of inducers in the tumor-associated microenviron-
ment and contribute to the regulation of tumor metasta-
sis, tumor invasion, and other malignant behaviors [62]. 
Negatively modulating M2 macrophage polarization and 
reducing the proportion of macrophages could delay OC 
progression.

Therapeutic strategies for OC that involve 
modulating macrophages during the aging pro-
cess

The occurrence and development of tumors can trigger a 
series of inflammatory reactions that can serve as thera-
peutic targets. On the one hand, it has been found that 
inflammatory microenvironments can promote drug re-
sistance and gene instability in tumor epithelial cells and 
affect the infiltration and colonization of immune cells, 
such as macrophages [64, 65]. On the other hand, TAMs 
act as a ‘bridge’ between the anti-tumor immune response 
and tumor cells during the occurrence and development 
of malignant tumors. At present, there are four therapeutic 
approaches that target TAMs: inhibition of the growth of 
TAMs, prevention of the recruitment of macrophages, re-
polarization of M2-like TAMs into M1 macrophages, and 
nanoparticle- and liposome-based delivery of anti-tumor 
drugs [66]. 
Studies have shown that human recombinant antibody 
single-chain variable fragments (scFv) can be used to 
prevent the binding of mesothelin and macrophages, thus 
inhibiting the polarization of M0 macrophages into TAMs 
[67]. Several therapeutic drugs that target TAMs are being 
investigated or have been used in clinical practice. For ex-
ample, trabectedin can interfere with the survival of TAMs 
[68], and alemtuzumab reduces the number and activity 
of TAMs by targeting surface proteins [69]. Nanoparticles 
loaded with cisplatin can be endocytosed by TAMs and 
thus affect tumor cells and play a role in targeted therapy 
[70]. Histidine-rich glycoprotein (HRG) has been found 
to regulate the repolarization of M2-like TAMs into M1 
macrophages; hence, it could be used to inhibit the prolif-
eration and metastasis of malignant tumors and promote 
an anti-tumor immune response [71]. Paclitaxel, an anti-
tumor drug used in the treatment of OC, can regulate the 
repolarization of M2 macrophages into M1 macrophages 
through the Toll Like Receptor 4 (TLR4)-dependent 
pathway, thereby inhibiting tumor growth [72]. Studies 
have also indicated that the relationship between macro-
phage polarization and OC can be affected by cisplatin. 
In cisplatin-sensitive tumor cells, macrophages promote 
the epithelial-mesenchymal transition (EMT) process and 
EMT-related gene expression, while such effects cannot 
be found in cisplatin-resistant tumor cells, suggesting that 
macrophage polarization plays a significant role in malig-
nant tumor progression [73].
Some plant extracts have been found to inhibit tumor 
growth by altering macrophage polarization. For example, 
in OC, neferine affects angiogenesis by regulating the po-



larization of TAMs, thus exerting anti-tumor effects [74]. 
In other research, deoxyschizandrin extracted from berries 
has been found to inhibit the activity of M2 macrophages, 
and onionin A has been found to have a cytotoxic effect 
on OC cells and restrain the activity of M2 macrophages 
[75, 76]. Thus, these findings indicate that targeting mac-
rophage polarization is an effective strategy for inhibiting 
the malignant progression of OC.

Discussion and perspective

OC is considered the most malignant gynecological tumor 
type because it has atypical clinical symptoms, is difficult 
to diagnose early, and gradually develops chemotherapy 
resistance during treatment. Also, there is no effective 
treatment for high-grade recurrent OC, and aging is a ma-
jor factor in the occurrence and progression of OC. There-
fore, there is an urgent need to understand the molecular 
mechanisms involved in the malignant progression of OC 
and to develop effective therapeutic drugs. 
The tumor microenvironment is a complex network of 
cytokines, exosomes secreted by different cells, immune 
cells, fibroblasts, and mesenchymal stem cells. To main-
tain a suitable tumor microenvironment, several cytokines 
are released by different types of immune cells during 
aging. Hence, the occurrence and development of tumors 
are largely affected by the innate and adaptive immune 
responses. 
A growing number of studies are showing that suppress-
ing and eliminating tumor cells by activating the innate 
immune system is an effective tumor treatment strategy. 
Macrophages are part of the infiltrating immune cell 
population in the tumor microenvironment and are in-
volved in regulating the malignant progression of OC. In 
most cases, M1 macrophages have an anti-tumor effect, 
while M2-like TAMs support immunosuppression and 
tumor immune escape. Among all the infiltrating immune 
cells in the tumor microenvironment, TAMs are typically 
the most abundant cell type. By initiating fibrosis, TAMs 
regulate the tumor microenvironment, thereby inhibiting 
immune defense and facilitating angiogenesis. In various 
tumor types, the number of M2 macrophages in tumors is 
negatively correlated with patient survival and positively 
correlated with tumorigenesis. Hence, alteration of the M1 
to M2 macrophage ratio is a potential strategy for treating 
OC and improving the associated prognosis.
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