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Abstract

In recent years, the tumor microenvironment has become the focus of immunotherapy in patients with lym-
phoma, especially with increasing age. The programmed death 1 (PD-1) and programmed death 1 ligand (PD-
L1) signaling pathway is an important mechanism of cancer immunomodulation, and abnormal activation in
the tumor microenvironment shows that the PD-1/PD-L1 pathway may take part in the regulation of tumor
immune escape. Interleukin-17A (IL-17A) is a pro-inflammatory cytokine that plays a crucial role in the lym-
phoma cancer microenvironment and has divided roles in both tumor growth and cancer elimination. Thus IL-
17A is a potential target in cancer immunotherapy. Previous studies have shown that IL-17A up-regulates the
expression of PD-L1 in cancers or in autoimmune diseases but whether there is an interaction or relationship
between the PD-1/PD-L1 pathway and IL-17A in lymphoma has not yet been fully recognized. The aim of this
review is to track the recent progress of the PD-1/PD-L1 pathway and IL-17A in lymphoma. A better under-
standing of the role of the PD-1/PDL1 pathway and IL-17A in the progression of lymphoma will help provide
new therapeutic directions, especially in older patients.
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Introduction

Lymphoma is a prevalent hematologic malignancy world-
wide. In recent years, treatments for some types of lym-
phomas have been introduced, but relapsed or refractory
lymphomas remain common and challenging. This situa-
tion has increased efforts to seek new treatments for lym-
phomas. One promising therapeutic target is programmed
cell death protein 1 (PD-1), a receptor protein that is
expressed by activated T cells, monocytes, macrophages,
dendritic cells (DCs), natural killer (NK) cells, and B lym-
phocytes [1], and is especially overexpressed by tumor-
specific T cells [2].

Normal antigen-presenting cells, macrophages, and den-
dritic cells express PD-1 ligands that combine with PD-1
receptors found on activated T cells. PD-1 is only ex-
pressed on the surface of activated T lymphocytes and not
in resting T cells; therefore, it is a useful activation marker
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for T cells. Tumor cells overexpress programmed death
1 ligand (PD-L1), which then interacts with PD-1 ligands
to activate the PD-1/PD-L1 signal pathway. This activa-
tion can suppress T cell function, thereby reducing the T
cell to a dysfunctional state called exhaustion. This allows
tumor immune escape and causes tumors to be highly re-
fractory to conventional chemotherapy.

Previous studies have shown that the expression of PD-L1
predicts a worse outcome and is related to poor survival in
patients with malignant lymphoma [3-6]. Cancer cells are
capable of evading immune surveillance by the PD-1/PD-
L1 signal pathway by 1) suppressing tumor-infiltrating
lymphocyte activation and inducing cell apoptosis; 2) sup-
pressing the production of cytotoxic T lymphocyte (CTL)
granular enzyme and perforin; 3) inducing the secretion
of inflammatory cytokines, such as IFN-y, TNF-a, and IL-
2, and enhancing the secretion of the immune inhibitory
cytokine IL-10, 4) causing stagnation of the T cell cycle
and accumulation of cells in the GO/G1 phase; and 5) pro-
moting tumor cell epithelialization, tumor invasion, and
metastasis [7]. The PD-1/PD-L1 signaling pathway now
serves as a target for immunotherapy, and a broad range
of anti-PD-1/PD-L1 antibodies that target its molecular
mechanism is used as cancer cures.

Interleukin-17 (IL-17, also known as Interleukin-17A (IL-
17A) and originally termed CTLAS) is produced by Th17
cells, yOT cells, NK cells, and CD8 T cells in the cancer
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microenvironment [8]. IL-17A is the prototypical member
of the IL-17 family of pro-inflammatory cytokines and is
the most extensively researched member of the IL-17 fam-
ily [9, 10], as it plays a vital role in tissue inflammation
and in the pathogenesis of many autoimmune diseases [11].
Despite extensive study in the field of inflammation, little
is known regarding the presence and role of IL-17A in
cancers. In the past decades, many studies have reported
that IL-17A plays a dual role as both a tumor promotor
and a tumor suppressor, and this duality may be related to
the differences in the complex tumor microenvironment,
tumor types, tumor development processes, tumor etiol-
ogy, and tumor sensitivity to chemotherapeutic drugs.

In this context, IL-17A has also become one of the critical
research hotspots in the field of lymphoma in recent years.
IL-17A promotes tumor development in lymphoma and
can even lead to drug resistance [12-14]. Past studies have
reported that IL-17A enhances the expression of PD-L1
in many tumors and in autoimmune diseases [15, 16], but
research on lymphoma is lacking. We have hypothesized
that a relationship or interaction exists between the PD-1/
PD-L1 signal pathway and IL-17A in lymphoma [17, 18].
The aim of the present review was therefore to provide a
better understanding of the roles of PD-1/PDL1 and IL-
17A in lymphoma to prompt new therapeutic ideas for the
future treatment of this hematologic cancer.

Expression and regulation of PD-1/PD-L1 in
lymphoma

Zhang et al., using the TCGA and GTEx databases, found
that all B7 family members, including B7-HS, were highly
expressed in diffuse large B cell lymphoma (DLBCL),
showing that the B7 family may play important roles in
lymphoma immunization [19]. PD-L1 is not only ex-
pressed in DLBCL cancer cells but also in cancer-infiltrat-
ing non-malignant cells. Andorsky et al. showed that PD-
L1 is highly expressed in Hodgkin lymphoma (HL) and
anaplastic large cell lymphoma (ALCL), and many poor-
prognosis DLBCLs originate from the activated B cell/
non-germinal center B cell subtype and that PD-L1 sup-
presses the activity of tumor-associated T cells [20].

The mechanism of PD-1/PD-L1 expression is complex
and is influenced by various factors. PD-1/PD-L1 expres-
sion plays vital roles in propagation, immigration, eva-
sion, drug resistance, and immune evasion in lymphoma.

Activation of the MEK/ERK, MAPK, and JAK/STAT
pathways affects the expression of PD-1/PD-L1

In anaplastic lymphoma kinase (ALK)+ ALCL cells, the
expression of PD-1 was inhibited by blocking the extra-
cellular signal-regulated kinase (ERK) signal pathway and
was upregulated by augmentation of ERK activity [21].
These responses suggested that PD-1 expression in ALCL
is regulated by the ERK signal pathway [21]. The expres-
sion of PD-L1 can be enhanced by overexpression of the
EBV-driven latent membrane proteins (LMP1 and LMP2)
that activate the pro-proliferative nuclear factor (NF-«b)/

mitogen-activated protein kinases (MAPK) signaling
pathway [22]. The infiltrating macrophages associated
with lymphoma are induced to express PD-L1 and PD-L2
by the IL-27/ signal transducer and activator of transcrip-
tion 3 (STAT3) signal pathway [23]. Some chemotherapy
drugs can upregulate PD-L1 expression in DLBCL cells
in part through the promotion of the p-STAT3 pathway
[24]. Song et al. have demonstrated that STAT3 activa-
tion confers high PD-L1 expression in natural killer/T cell
lymphoma (NKTL) tumors and may enhance tumor im-
mune evasion [25].

Copy number alterations (CNAs) in chromosome
9p24.1 enhance PD-L1 expression

Chromosomal abnormalities (including chromosomal
amplification, polysomy, gain, or translocation) of 9p24.1,
which encodes the PD-L1 and PD-L2 proteins and Janus
kinase 2, have been reported to lead to the overexpres-
sion of PD-L1 and PD-L2 [26]. Several previous stud-
ies have reported that the amplification of chromosome
9p24.1 enhances the abundance of both PD-L1 and its
inducer, JAK2, in the related diseases of nodular scleros-
ing Hodgkin lymphoma and primary mediastinal large
B cell lymphoma [27]. The JAK2 signal pathway also
further strengthens PD-L1 expression in cell lines with
9p24.1 amplification [27]. As such, the CNAs of 9p24.1
in lymphomas provides a chance to examine the efficacy
of immune checkpoint inhibitors targeting PD-1, as these
inhibitors have shown effectiveness in the treatment of re-
lapsed/refractory lymphomas [28].

PD-L1 expression is induced by inflammatory factors
(e.g., IFN-y, IL-27, and IL-1a)

Duffield et al. demonstrated that, in addition to the known
enhancement of PD-L1 expression by IFN-y in DCs and
monocytes, IL-27 and IL-1a can also increase the expres-
sion of PD-L1 in different immune cell subsets [29]. Chen
et al. reported that PD-L1 expression could be induced in
the tumor immune microenvironment by multiple cyto-
kines, including IFN-y , IL-1a, IL-10, IL-27, and IL-32y,
through different signaling mechanisms [29, 30].

Application of PD-1/PD-L1 inhibitors in lym-
phoma treatment

In the past, the main treatment approaches for lymphomas,
especially non-Hodgkin lymphomas, were surgery, radio-
therapy, and chemotherapy. Today, a considerable propor-
tion of lymphomas, particularly the aggressive forms,
still progress/relapse after treatment. DLBCL is the most
general type of non-Hodgkin lymphoma (NHL) in China,
accounting for 30—40% of all cases, and it shows strong
heterogeneity. The emergence of rituximab has resulted in
satisfactory results when combined with chemotherapy,
but 30-40% of all cases remain refractory/relapsed [31].
Deepening research on the tumor microenvironment and
tumor immune regulation has given immunotherapy a
significant role and is gradually finding wide use in lym-
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phoma, especially in refractory/relapsed types. Immuno-
therapy, such as chimeric antigen receptor (CAR) T cell
therapy and therapeutic blockade of immune checkpoints
(especially the PD-1/PD-L1 checkpoint inhibitor), is a
breakthrough in the therapy of malignant tumors [32, 33].

Current PD-1/PD-L1 antibodies in lymphoma

To date, many types of anti-PD-1 or anti-PD-L1 antibod-
ies have been produced (Table 1). The list from finished
clinical trials targeting PD-1/PD-L1 in lymphoma includes
anti-PD-1 antibodies (nivolumab [33, 34], pembrolizumab
[35-37], geptanolimab [38], camrelizumab [39], tisleli-
zumab [40], sintilimab [41]) and anti-PD-L1 antibodies
(avelumab [42], atezolizumab [43], durvalumab [44].)

In classical Hodgkin lymphoma (cHL), NHL, and mul-
tiple myeloma, nivolumab is indicated as a breakthrough
therapy for treating relapsed/refractory (R/R) patients
[33, 45-47]. Nivolumab has also received approval for
the treatment of relapsed or progressive cHL after autolo-
gous hematopoietic stem cell transplantation. The United
States Food and Drug Administration recently approved a
monoclonal anti-PD-1 antibody (pembrolizumab) for the

treatment of adult and pediatric patients with refractory
primary mediastinal large B cell lymphoma or those who
have relapsed after treatment [35]. A monoclonal anti-
PD-1 antibody (sintilimab) is also used to treat relapsed
or refractory cHL and extranodal natural killer/T cell lym-
phoma (ENKTL) [44, 48].

Combination of PD-1/PD-L1 antibodies and immuno-
modulatory drugs

In multiple solid cancer types, therapy that combines
CTLA-4 and PD-1 blockers has shown remarkable clini-
cal efficacy, and the discovery of the roles of CTLA-4 and
PD-1 in cancer has stimulated concerted efforts to develop
cancer immunotherapy treatments [49]. Clinical trials that
test the combination of PD-(L)1 or CTLA-4 antibodies
with molecular mediators of these pathways are becom-
ing increasingly popular [50]. For example, Ma ef al. have
indicated that the combination of PD-1 and CTLA-4 can
increase the effect of cord blood T cells on EBV-induced
lymphoma growth in a humanized mouse model of cord
blood, suggesting that PD-1/CTLA-4 blockade may be
helpful for the treatment of EBV-induced diseases in hu-

Table 1. A summary of anti-PD-1 or anti-PD-L1 antibodies for lymphoma treatment.

Target Agent Disease Combination therapy Phase study Efficacy
PD-L1 Durvalumab High-risk DLBCL R-CHOP I Effective
PD-L1 Atezolizumab RR-MCL/rr-MZL Obinutuzumab or rituximab I Effective
Atezolizumab RR-FL Obinutuzumab and bendamustine Ib/II Effective
Atezolizumab NHL/HL - v Invalid
PD-L1 Avelumab RR-ENKTL - 11 Effective
Avelumab RR-cHL - Ib Effective
Avelumab RR-DLBCL Rituximab/ bendamustine and 1, Effective
rituximab
PD-1 Nivolumab RR-FL, RR-cHL - I/ Effective
Nivolumab RR-DLBCL - I Low overall
Nivolumab RR-HL, RR-PMBCL  Brentuximab vedotin /11 Effective
Nivolumab RR-DLBCL, RR-FL Ibrutinib /11 Effective
PD-1 Pembrolizumab ]C?EPMBCL’ RR-HL/ Ib/1I/11 Effective
Pembrolizumab RR-FL Rituximab I Effective
Pembrolizumab RR-cHL Qemcﬁabme, vmor.el.bme, and I Effective
liposomal doxorubicin
Pembrolizumab RR-cHL Brentuximab vedotin 1 Effective
PD-1 Geptanolimab RR-PTCL - I Effective
PD-1 Camrelizumab R/R cHL - I Effective
Camrelizumab R/R cHL/HL Decitabine I Effective
Camrelizumab RR-PMBCL GVD chemotherapy I Effective
PD-1 Tislelizumab R/R cHL - I Effective
PD-1 Sintilimab R/R ENKTL, R/R cHL - 11 Effective

Note: MCL/MZL, mantle cell or marginal zone lymphoma; ENKTL, extranodal NK/T cell lymphoma; cHL, classical Hodgkin lymphoma; PMBCL,
primary mmediastinal large B cell Lymphoma; NHL, non-Hodgkin lymphoma; PTCL, peripheral T cell lymphoma; GVD, gemcitabine, vinorelbine,
and pegylated liposomal doxorubicin; RR, relapsed/refractory; DLBCL, diffuse large B cell lymphoma; FL, follicular lymphoma; R-CHOP, rituximab,

cyclophosphamide, doxorubicin, vincristine, and prednisone.
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mans. In addition, some evidence supports a greater clini-
cal benefit for the combined use of CTLA-4 antibodies
and PD-1 antibodies than for either antibody type alone
[51]. Many other clinical trials and pre-clinical tumor
model experiments are also ongoing to assess the effect of
other combinations of checkpoint proteins and anti-PD-1/
PD-L1 antibodies. This approach has expanded from
CTLA-4 and PD-1 to include Tim-3, Lag-3, and most
recently, TIGIT PD-1/TIM-3, PD-1/LAG-3, and PD-1/
TIGIT) [52-57].

Combination of PD-1/PD-L1 antibodies and chemo-
therapeutic drugs

Chemotherapy is one of the main tumor treatment meth-
ods. It kills tumor cells by inducing DNA damage, cell
cycle arrest, and eventually cell apoptosis. The antitumor
action of chemotherapeutic drugs is affected by the im-
mune status of patients, which provides ideas for the de-
velopment of combination regimens using a PD-1/PD-L1
blockade with existing chemotherapeutics. One study has
demonstrated an important synergistic effect of a PD-1 in-
hibitor and various chemotherapeutic drugs, such as cispl-
atin, cytarabine, etoposide, oxaliplatin, and carboplatin, in
the treatment of DLBCL. One interesting finding was that
no difference was observed in cytotoxicity between the
groups with or without the PD-L1 inhibitor [58]. Smith
et al. have reported overall and complete response rates
of 90% and 77% in DLBCL patients given a combination
treatment with the PD-1 antibody pembrolizumab and R-
CHOP therapy (rituximab, cyclophosphamide, doxoru-
bicin, vincristine, and prednisone). Their results showed
that the combination of PD-L1 inhibitor and R-CHOP did
not increase severe toxicity, nor did it impede the safe de-
livery of 6 cycles of chemotherapy while providing high
efficacy [59]. Wei ef al. have shown that a combination of
PD-1/PD-L1 inhibitors increased the antitumor immune
response in DLBCL and that patients given the combined
treatment had longer survival than those given the chemo-
therapy drug or the PD-1/PD-L1 inhibitor alone [24].

Combination of PD-1/PD-L1 antibodies and radiother-
apy

The development and success of checkpoint blockades in
the clinical setting have increased interest in the combina-
tion of radiotherapy and PD-1/PD-L1 blockade, and some
pre-clinical evidence highlights the synergistic potential
of this combination [60, 61]. For example, regimens con-
taining asparaginase/pegaspargase, when combined with
radiotherapy, are very effective and are regarded as the
foundation of localized NKTL treatments. A retrospective
study identified the combination of an anti-PD-1 antibody
with anlotinib and pegaspargase as a promising regimen
“sandwich” with radiotherapy for treating localized NTKL,
as it was less toxic and had better tolerance [62]. One on-
going phase I/IT trial (NCT01976585) investigating local
radiotherapy in combination with the local application of
immunostimulatory agents in patients with indolent lym-
phoma is providing further support for the combination of
radiotherapy and PD-1 / PD-L1 blockade [63].

Combination of PD-1/PD-L1 antibodies and CAR-T
therapy

CAR-T therapy is a type of gene therapy that uses a T cell
receptor (TCR) or CAR to engineer T cells. Therefore,
it can specifically recognize tumor antigens and kill tu-
mor cells [64]. China leads globally in the total number
of CAR-T cell therapies, with two CD19-targeted CAR-
T cell therapies recently approved [65, 66]. These CAR-
T therapies have shown great success and unprecedented
results in the treatment of refractory/relapsed lymphoma,
leukemia, and myeloma [67]. However, some patients
show no response to CAR-T cell therapy and even relapse
after the therapy. Therefore, studies are now reporting that
the application of reduced-dose PD-1 blockade therapy
combined with CAR-T cell therapy can enhance the an-
titumor effect in pre-clinical models and clinical trials,
indicating that this might represent a promising treatment
option for relapsed/refractory lymphomas [68-70].

Role of IL-17A in tumors

Th17 cells and IL-17A play a significant part in tumor
progression. Recent studies have confirmed that IL-
17A promotes tumor growth during early tumorigenesis,
whereas IL-17A suppresses tumor growth in established
tumors by enhancing antitumor immunity [71]. In lym-
phomas, most studies have demonstrated that IL-17A pro-
motes tumor growth; therefore, inhibition of IL-17A pro-
duction may represent an important strategy for enhancing
the sensitivity and therapeutic benefits of chemotherapy
[14, 72]. However, Xin et al. have described adoptive im-
munotherapy using Th17 cells in DLBCL tumor—bearing
mice and have verified that IL-17 has an antitumor effect
in lymphoma [73]. At present, therefore, the role of IL-
17A in cancer remains controversial.

Tumor-promoting functions of IL-17A

IL-17A promotes cancer by directly stimulating tumor
cells or by indirectly inducing an immunosuppressive
tumor microenvironment. IL-17A could promote an-
giogenesis through the VEGF pathway and the CXCR-
2-dependent pathway to promote tumor growth [74, 75].
Okuyama et al. found that treatment with an antagonistic
IL-17A antibody in mice inhibited tumor development by
elevating IFN-y production, indicating that IL-17A exerts
its antitumor activity by influencing IFN-y production [76].
Chang et al. also showed that the IL-17A produced by
Th17 cells in a K-ras (G12D) mouse lung cancer model
could induce tumor growth by recruiting myeloid sup-
pressor cells [77]. Some studies have revealed that IL-
17A’s effects on the nuclear factor NF-kB and p38 MAPK
signaling pathways can stimulate tumor growth [78, 79].
IL-17A can increase tumor cell invasion and metasta-
sis, while also supporting the survival of tumor cells in
faraway organs by directly upregulating ERK signaling
[80]. IL-17A can enhance tumor growth by inducing IL-6
expression because IL-6 activates the oncogenic transcrip-
tion factor STAT3 and upregulates pro-survival and pro-
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angiogenic genes in tumors [81].
Tumor-suppressing functions of IL-17A

Kryczek et al. have shown increases in tumor growth and
metastasis in IL-17—deficient mice and related the increas-
es to decreases in tumor-specific interferon-gamma (+) T
cells and interferon-gamma (+) natural killer cells in the
tumors. These findings confirmed that IL-17A may have a
protective role in cancer immunity and that it can restrain
tumor growth and metastasis by IFN-c producing NK and
T cells [82]. The results of Martin-Orozco indicate that
Th17 cells and IL-17A play a protective role by inhibiting
tumors and hindering tumor development through the ac-
tivation of tumor-specific CD8 (+) T cells [83]. Benchetrit
et al. have shown that IL-17A inhibited the growth rate of
lymphoma J558L and mastocytoma P815 tumors, suggest-
ing that the antitumor activity of IL-17 is host-dependent
and involves T lymphocytes [84]. Another study revealed
that IL-17A accelerated DC recruitment into tumor tis-
sues, thereby leading to CTL expansion—a crucial event
for the antitumor effect [83].

Conclusion

Some cancer patients have shown remarkable antitumor
responses to therapies that block the PD-L1/PD-1 signal
pathway; however, the tumor responses after PD-1/PD-L1
immunotherapy are limited, and some patients were com-
pletely unresponsive. Therefore, new checkpoint inhibitors
are needed for combined use with PD-L1/PD-1 inhibitors
to increase the response rate in tumors, especially in lym-
phoma. The better understanding of PD-1/PD-L1 and IL-
17A provided by this review draws attention to possible
interactions occurring in the tumor microenvironment that
may aid in finding novel and promising immunotherapeu-
tic targets for curing lymphoma. However, further in vitro
and in vivo research is needed to develop and implement
novel ways to combat tumors.
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