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lymphomas

Li Yanga, Xin Xua, * 

a Department of Geriatrics, Guangzhou First People’s Hospital, Guangzhou 510000, China.

R
E

V
IE

W

Aging Pathobiology and Therapeutics 2022; 4(2): 38-45  38
DOI: 10.31491/APT.2022.06.084

 Abstract
In recent years, the tumor microenvironment has become the focus of immunotherapy in patients with lym-
phoma, especially with increasing age. The programmed death 1 (PD-1) and programmed death 1 ligand (PD-
L1) signaling pathway is an important mechanism of cancer immunomodulation, and abnormal activation in 
the tumor microenvironment shows that the PD-1/PD-L1 pathway may take part in the regulation of tumor 
immune escape. Interleukin-17A (IL-17A) is a pro-inflammatory cytokine that plays a crucial role in the lym-
phoma cancer microenvironment and has divided roles in both tumor growth and cancer elimination. Thus IL-
17A is a potential target in cancer immunotherapy. Previous studies have shown that IL-17A up-regulates the 
expression of PD-L1 in cancers or in autoimmune diseases but whether there is an interaction or relationship 
between the PD-1/PD-L1 pathway and IL-17A in lymphoma has not yet been fully recognized. The aim of this 
review is to track the recent progress of the PD-1/PD-L1 pathway and IL-17A in lymphoma. A better under-
standing of the role of the PD-1/PDL1 pathway and IL-17A in the progression of lymphoma will help provide 
new therapeutic directions, especially in older patients.
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Introduction

Lymphoma is a prevalent hematologic malignancy world-
wide. In recent years, treatments for some types of lym-
phomas have been introduced, but relapsed or refractory 
lymphomas remain common and challenging. This situa-
tion has increased efforts to seek new treatments for lym-
phomas. One promising therapeutic target is programmed 
cell death protein 1 (PD-1), a receptor protein that is 
expressed by activated T cells, monocytes, macrophages, 
dendritic cells (DCs), natural killer (NK) cells, and B lym-
phocytes [1], and is especially overexpressed by tumor-
specific T cells [2]. 
Normal antigen-presenting cells, macrophages, and den-
dritic cells express PD-1 ligands that combine with PD-1 
receptors found on activated T cells. PD-1 is only ex-
pressed on the surface of activated T lymphocytes and not 
in resting T cells; therefore, it is a useful activation marker 

for T cells. Tumor cells overexpress programmed death 
1 ligand (PD-L1), which then interacts with PD-1 ligands 
to activate the PD-1/PD-L1 signal pathway. This activa-
tion can suppress T cell function, thereby reducing the T 
cell to a dysfunctional state called exhaustion. This allows 
tumor immune escape and causes tumors to be highly re-
fractory to conventional chemotherapy.
Previous studies have shown that the expression of PD-L1 
predicts a worse outcome and is related to poor survival in 
patients with malignant lymphoma [3-6]. Cancer cells are 
capable of evading immune surveillance by the PD-1/PD-
L1 signal pathway by 1) suppressing tumor-infiltrating 
lymphocyte activation and inducing cell apoptosis; 2) sup-
pressing the production of cytotoxic T lymphocyte (CTL) 
granular enzyme and perforin; 3) inducing the secretion 
of inflammatory cytokines, such as IFN-γ, TNF-α, and IL-
2, and enhancing the secretion of the immune inhibitory 
cytokine IL-10, 4) causing stagnation of the T cell cycle 
and accumulation of cells in the G0/G1 phase; and 5) pro-
moting tumor cell epithelialization, tumor invasion, and 
metastasis [7]. The PD-1/PD-L1 signaling pathway now 
serves as a target for immunotherapy, and a broad range 
of anti-PD-1/PD-L1 antibodies that target its molecular 
mechanism is used as cancer cures. 
Interleukin-17 (IL-17, also known as Interleukin-17A (IL-
17A) and originally termed CTLA8) is produced by Th17 
cells, γδT cells, NK cells, and CD8 T cells in the cancer 

https://creativecommons.org/licenses/by/4.0/


Aging Pathobiology and Therapeutics 2022; 4(2): 38-45  39

R
E

V
IE

W

microenvironment [8]. IL-17A is the prototypical member 
of the IL-17 family of pro-inflammatory cytokines and is 
the most extensively researched member of the IL-17 fam-
ily [9, 10], as it plays a vital role in tissue inflammation 
and in the pathogenesis of many autoimmune diseases [11]. 
Despite extensive study in the field of inflammation, little 
is known regarding the presence and role of IL-17A in 
cancers. In the past decades, many studies have reported 
that IL-17A plays a dual role as both a tumor promotor 
and a tumor suppressor, and this duality may be related to 
the differences in the complex tumor microenvironment, 
tumor types, tumor development processes, tumor etiol-
ogy, and tumor sensitivity to chemotherapeutic drugs. 
In this context, IL-17A has also become one of the critical 
research hotspots in the field of lymphoma in recent years. 
IL-17A promotes tumor development in lymphoma and 
can even lead to drug resistance [12-14]. Past studies have 
reported that IL-17A enhances the expression of PD-L1 
in many tumors and in autoimmune diseases [15, 16], but 
research on lymphoma is lacking. We have hypothesized 
that a relationship or interaction exists between the PD-1/
PD-L1 signal pathway and IL-17A in lymphoma [17, 18]. 
The aim of the present review was therefore to provide a 
better understanding of the roles of PD-1/PDL1 and IL-
17A in lymphoma to prompt new therapeutic ideas for the 
future treatment of this hematologic cancer.

Expression and regulation of PD-1/PD-L1 in 
lymphoma

Zhang et al., using the TCGA and GTEx databases, found 
that all B7 family members, including B7-H5, were highly 
expressed in diffuse large B cell lymphoma (DLBCL), 
showing that the B7 family may play important roles in 
lymphoma immunization [19]. PD-L1 is not only ex-
pressed in DLBCL cancer cells but also in cancer-infiltrat-
ing non-malignant cells. Andorsky et al. showed that PD-
L1 is highly expressed in Hodgkin lymphoma (HL) and 
anaplastic large cell lymphoma (ALCL), and many poor-
prognosis DLBCLs originate from the activated B cell/
non-germinal center B cell subtype and that PD-L1 sup-
presses the activity of tumor-associated T cells [20]. 
The mechanism of PD-1/PD-L1 expression is complex 
and is influenced by various factors. PD-1/PD-L1 expres-
sion plays vital roles in propagation, immigration, eva-
sion, drug resistance, and immune evasion in lymphoma. 

Activation of the MEK/ERK, MAPK, and JAK/STAT 
pathways affects the expression of PD-1/PD-L1 

In anaplastic lymphoma kinase (ALK)+ ALCL cells, the 
expression of PD-1 was inhibited by blocking the extra-
cellular signal-regulated kinase (ERK) signal pathway and 
was upregulated by augmentation of ERK activity [21]. 
These responses suggested that PD-1 expression in ALCL 
is regulated by the ERK signal pathway [21]. The expres-
sion of PD-L1 can be enhanced by overexpression of the 
EBV-driven latent membrane proteins (LMP1 and LMP2) 
that activate the pro-proliferative nuclear factor (NF-κb)/

mitogen-activated protein kinases (MAPK) signaling 
pathway [22]. The infiltrating macrophages associated 
with lymphoma are induced to express PD-L1 and PD-L2 
by the IL-27/ signal transducer and activator of transcrip-
tion 3 (STAT3) signal pathway [23]. Some chemotherapy 
drugs can upregulate PD-L1 expression in DLBCL cells 
in part through the promotion of the p-STAT3 pathway 
[24]. Song et al. have demonstrated that STAT3 activa-
tion confers high PD-L1 expression in natural killer/T cell 
lymphoma (NKTL) tumors and may enhance tumor im-
mune evasion [25]. 

Copy number alterations (CNAs) in chromosome 
9p24.1 enhance PD-L1 expression

Chromosomal abnormalities (including chromosomal 
amplification, polysomy, gain, or translocation) of 9p24.1, 
which encodes the PD-L1 and PD-L2 proteins and Janus 
kinase 2, have been reported to lead to the overexpres-
sion of PD-L1 and PD-L2 [26]. Several previous stud-
ies have reported that the amplification of chromosome 
9p24.1 enhances the abundance of both PD-L1 and its 
inducer, JAK2, in the related diseases of nodular scleros-
ing Hodgkin lymphoma and primary mediastinal large 
B cell lymphoma [27]. The JAK2 signal pathway also 
further strengthens PD-L1 expression in cell lines with 
9p24.1 amplification [27]. As such, the CNAs of 9p24.1 
in lymphomas provides a chance to examine the efficacy 
of immune checkpoint inhibitors targeting PD-1, as these 
inhibitors have shown effectiveness in the treatment of re-
lapsed/refractory lymphomas [28].

PD-L1 expression is induced by inflammatory factors 
(e.g., IFN-γ, IL-27, and IL-1α)

Duffield et al. demonstrated that, in addition to the known 
enhancement of PD-L1 expression by IFN-γ in DCs and 
monocytes, IL-27 and IL-1α can also increase the expres-
sion of PD-L1 in different immune cell subsets [29]. Chen 
et al. reported that PD-L1 expression could be induced in 
the tumor immune microenvironment by multiple cyto-
kines, including IFN-γ , IL-1α, IL-10, IL-27, and IL-32γ, 
through different signaling mechanisms [29, 30].

Application of PD-1/PD-L1 inhibitors in lym-
phoma treatment

In the past, the main treatment approaches for lymphomas, 
especially non-Hodgkin lymphomas, were surgery, radio-
therapy, and chemotherapy. Today, a considerable propor-
tion of lymphomas, particularly the aggressive forms, 
still progress/relapse after treatment. DLBCL is the most 
general type of non-Hodgkin lymphoma (NHL) in China, 
accounting for 30–40% of all cases, and it shows strong 
heterogeneity. The emergence of rituximab has resulted in 
satisfactory results when combined with chemotherapy, 
but 30–40% of all cases remain refractory/relapsed [31]. 
Deepening research on the tumor microenvironment and 
tumor immune regulation has given immunotherapy a 
significant role and is gradually finding wide use in lym-
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phoma, especially in refractory/relapsed types. Immuno-
therapy, such as chimeric antigen receptor (CAR) T cell 
therapy and therapeutic blockade of immune checkpoints 
(especially the PD-1/PD-L1 checkpoint inhibitor), is a 
breakthrough in the therapy of malignant tumors [32, 33].

Current PD-1/PD-L1 antibodies in lymphoma

To date, many types of anti-PD-1 or anti-PD-L1 antibod-
ies have been produced (Table 1). The list from finished 
clinical trials targeting PD-1/PD-L1 in lymphoma includes 
anti-PD-1 antibodies (nivolumab [33, 34], pembrolizumab 
[35-37], geptanolimab [38], camrelizumab [39], tisleli-
zumab [40], sintilimab [41]) and anti-PD-L1 antibodies 
(avelumab [42], atezolizumab [43], durvalumab [44].) 
In classical Hodgkin lymphoma (cHL), NHL, and mul-
tiple myeloma, nivolumab is indicated as a breakthrough 
therapy for treating relapsed/refractory (R/R) patients 
[33, 45-47]. Nivolumab has also received approval for 
the treatment of relapsed or progressive cHL after autolo-
gous hematopoietic stem cell transplantation. The United 
States Food and Drug Administration recently approved a 
monoclonal anti-PD-1 antibody (pembrolizumab) for the 

treatment of adult and pediatric patients with refractory 
primary mediastinal large B cell lymphoma or those who 
have relapsed after treatment [35]. A monoclonal anti-
PD-1 antibody (sintilimab) is also used to treat relapsed 
or refractory cHL and extranodal natural killer/T cell lym-
phoma (ENKTL) [44, 48]. 

Combination of PD-1/PD-L1 antibodies and immuno-
modulatory drugs

In multiple solid cancer types, therapy that combines 
CTLA-4 and PD-1 blockers has shown remarkable clini-
cal efficacy, and the discovery of the roles of CTLA-4 and 
PD-1 in cancer has stimulated concerted efforts to develop 
cancer immunotherapy treatments [49]. Clinical trials that 
test the combination of PD-(L)1 or CTLA-4 antibodies 
with molecular mediators of these pathways are becom-
ing increasingly popular [50]. For example, Ma et al. have 
indicated that the combination of PD-1 and CTLA-4 can 
increase the effect of cord blood T cells on EBV-induced 
lymphoma growth in a humanized mouse model of cord 
blood, suggesting that PD-1/CTLA-4 blockade may be 
helpful for the treatment of EBV-induced diseases in hu-

Target Agent Disease Combination therapy Phase study Efficacy

PD-L1 Durvalumab High-risk DLBCL R-CHOP II Effective

PD-L1 Atezolizumab RR-MCL/rr-MZL Obinutuzumab or rituximab II Effective
Atezolizumab RR-FL Obinutuzumab and bendamustine Ib/II Effective
Atezolizumab NHL/HL - I/II Invalid

PD-L1 Avelumab RR-ENKTL - II Effective
Avelumab RR-cHL - Ib Effective

Avelumab RR-DLBCL Rituximab/ bendamustine and 
rituximab Ib Effective

PD-1 Nivolumab RR-FL, RR-cHL - I/II Effective
Nivolumab RR-DLBCL - II Low overall
Nivolumab RR-HL, RR-PMBCL Brentuximab vedotin I/II Effective
Nivolumab RR-DLBCL, RR-FL Ibrutinib I/II Effective

PD-1 Pembrolizumab RR-PMBCL, RR-HL/
cHL - Ib/II/III Effective

Pembrolizumab RR-FL Rituximab II Effective

Pembrolizumab RR-cHL Gemcitabine, vinorelbine, and 
liposomal doxorubicin II Effective

Pembrolizumab RR-cHL Brentuximab vedotin III Effective

PD-1 Geptanolimab RR-PTCL - II Effective

PD-1 Camrelizumab R/R cHL - II Effective
Camrelizumab R/R cHL/HL Decitabine II Effective
Camrelizumab RR-PMBCL GVD chemotherapy II Effective

PD-1 Tislelizumab R/R cHL - II Effective

PD-1 Sintilimab R/R ENKTL, R/R cHL - II Effective

Table 1. A summary of anti-PD-1 or anti-PD-L1 antibodies for lymphoma treatment.

Note: MCL/MZL, mantle cell or marginal zone lymphoma; ENKTL, extranodal NK/T cell lymphoma; cHL, classical Hodgkin lymphoma; PMBCL, 
primary mmediastinal large B cell Lymphoma; NHL, non-Hodgkin lymphoma; PTCL, peripheral T cell lymphoma; GVD, gemcitabine, vinorelbine, 
and pegylated liposomal doxorubicin; RR, relapsed/refractory; DLBCL, diffuse large B cell lymphoma; FL, follicular lymphoma; R-CHOP, rituximab, 
cyclophosphamide, doxorubicin, vincristine, and prednisone.
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mans. In addition, some evidence supports a greater clini-
cal benefit for the combined use of CTLA-4 antibodies 
and PD-1 antibodies than for either antibody type alone 
[51]. Many other clinical trials and pre-clinical tumor 
model experiments are also ongoing to assess the effect of 
other combinations of checkpoint proteins and anti-PD-1/
PD-L1 antibodies. This approach has expanded from 
CTLA-4 and PD-1 to include Tim-3, Lag-3, and most 
recently, TIGIT PD-1/TIM-3, PD-1/LAG-3, and PD-1/
TIGIT) [52-57]. 

Combination of PD-1/PD-L1 antibodies and chemo-
therapeutic drugs

Chemotherapy is one of the main tumor treatment meth-
ods. It kills tumor cells by inducing DNA damage, cell 
cycle arrest, and eventually cell apoptosis. The antitumor 
action of chemotherapeutic drugs is affected by the im-
mune status of patients, which provides ideas for the de-
velopment of combination regimens using a PD-1/PD-L1 
blockade with existing chemotherapeutics. One study has 
demonstrated an important synergistic effect of a PD-1 in-
hibitor and various chemotherapeutic drugs, such as cispl-
atin, cytarabine, etoposide, oxaliplatin, and carboplatin, in 
the treatment of DLBCL. One interesting finding was that 
no difference was observed in cytotoxicity between the 
groups with or without the PD-L1 inhibitor [58]. Smith 
et al. have reported overall and complete response rates 
of 90% and 77% in DLBCL patients given a combination 
treatment with the PD-1 antibody pembrolizumab and R-
CHOP therapy (rituximab, cyclophosphamide, doxoru-
bicin, vincristine, and prednisone). Their results showed 
that the combination of PD-L1 inhibitor and R-CHOP did 
not increase severe toxicity, nor did it impede the safe de-
livery of 6 cycles of chemotherapy while providing high 
efficacy [59]. Wei et al. have shown that a combination of 
PD-1/PD-L1 inhibitors increased the antitumor immune 
response in DLBCL and that patients given the combined 
treatment had longer survival than those given the chemo-
therapy drug or the PD-1/PD-L1 inhibitor alone [24].

Combination of PD-1/PD-L1 antibodies and radiother-
apy 

The development and success of checkpoint blockades in 
the clinical setting have increased interest in the combina-
tion of radiotherapy and PD-1/PD-L1 blockade, and some 
pre-clinical evidence highlights the synergistic potential 
of this combination [60, 61]. For example, regimens con-
taining asparaginase/pegaspargase, when combined with 
radiotherapy, are very effective and are regarded as the 
foundation of localized NKTL treatments. A retrospective 
study identified the combination of an anti-PD-1 antibody 
with anlotinib and pegaspargase as a promising regimen 
“sandwich” with radiotherapy for treating localized NTKL, 
as it was less toxic and had better tolerance [62]. One on-
going phase I/II trial (NCT01976585) investigating local 
radiotherapy in combination with the local application of 
immunostimulatory agents in patients with indolent lym-
phoma is providing further support for the combination of 
radiotherapy and PD-1 / PD-L1 blockade [63].

Combination of PD-1/PD-L1 antibodies and CAR-T 
therapy

CAR-T therapy is a type of gene therapy that uses a T cell 
receptor (TCR) or CAR to engineer T cells. Therefore, 
it can specifically recognize tumor antigens and kill tu-
mor cells [64]. China leads globally in the total number 
of CAR-T cell therapies, with two CD19-targeted CAR-
T cell therapies recently approved [65, 66]. These CAR-
T therapies have shown great success and unprecedented 
results in the treatment of refractory/relapsed lymphoma, 
leukemia, and myeloma [67]. However, some patients 
show no response to CAR-T cell therapy and even relapse 
after the therapy. Therefore, studies are now reporting that 
the application of reduced-dose PD-1 blockade therapy 
combined with CAR-T cell therapy can enhance the an-
titumor effect in pre-clinical models and clinical trials, 
indicating that this might represent a promising treatment 
option for relapsed/refractory lymphomas [68-70].

Role of IL-17A in tumors

Th17 cells and IL-17A play a significant part in tumor 
progression. Recent studies have confirmed that IL-
17A promotes tumor growth during early tumorigenesis, 
whereas IL-17A suppresses tumor growth in established 
tumors by enhancing antitumor immunity [71]. In lym-
phomas, most studies have demonstrated that IL-17A pro-
motes tumor growth; therefore, inhibition of IL-17A pro-
duction may represent an important strategy for enhancing 
the sensitivity and therapeutic benefits of chemotherapy 
[14, 72]. However, Xin et al. have described adoptive im-
munotherapy using Th17 cells in DLBCL tumor–bearing 
mice and have verified that IL-17 has an antitumor effect 
in lymphoma [73]. At present, therefore, the role of IL-
17A in cancer remains controversial.

Tumor-promoting functions of IL-17A

IL-17A promotes cancer by directly stimulating tumor 
cells or by indirectly inducing an immunosuppressive 
tumor microenvironment. IL-17A could promote an-
giogenesis through the VEGF pathway and the CXCR-
2-dependent pathway to promote tumor growth [74, 75]. 
Okuyama et al. found that treatment with an antagonistic 
IL-17A antibody in mice inhibited tumor development by 
elevating IFN-γ production, indicating that IL-17A exerts 
its antitumor activity by influencing IFN-γ production [76]. 
Chang et al. also showed that the IL-17A produced by 
Th17 cells in a K-ras (G12D) mouse lung cancer model 
could induce tumor growth by recruiting myeloid sup-
pressor cells [77]. Some studies have revealed that IL-
17A’s effects on the nuclear factor NF-κB and p38 MAPK 
signaling pathways can stimulate tumor growth [78, 79]. 
IL-17A can increase tumor cell invasion and metasta-
sis, while also supporting the survival of tumor cells in 
faraway organs by directly upregulating ERK signaling 
[80]. IL-17A can enhance tumor growth by inducing IL-6 
expression because IL-6 activates the oncogenic transcrip-
tion factor STAT3 and upregulates pro-survival and pro-
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angiogenic genes in tumors [81]. 

Tumor-suppressing functions of IL-17A

Kryczek et al. have shown increases in tumor growth and 
metastasis in IL-17–deficient mice and related the increas-
es to decreases in tumor-specific interferon-gamma (+) T 
cells and interferon-gamma (+) natural killer cells in the 
tumors. These findings confirmed that IL-17A may have a 
protective role in cancer immunity and that it can restrain 
tumor growth and metastasis by IFN-c producing NK and 
T cells [82]. The results of Martin-Orozco indicate that 
Th17 cells and IL-17A play a protective role by inhibiting 
tumors and hindering tumor development through the ac-
tivation of tumor-specific CD8 (+) T cells [83]. Benchetrit 
et al. have shown that IL-17A inhibited the growth rate of 
lymphoma J558L and mastocytoma P815 tumors, suggest-
ing that the antitumor activity of IL-17 is host-dependent 
and involves T lymphocytes [84]. Another study revealed 
that IL-17A accelerated DC recruitment into tumor tis-
sues, thereby leading to CTL expansion—a crucial event 
for the antitumor effect [83]. 

Conclusion

Some cancer patients have shown remarkable antitumor 
responses to therapies that block the PD-L1/PD-1 signal 
pathway; however, the tumor responses after PD-1/PD-L1 
immunotherapy are limited, and some patients were com-
pletely unresponsive. Therefore, new checkpoint inhibitors 
are needed for combined use with PD-L1/PD-1 inhibitors 
to increase the response rate in tumors, especially in lym-
phoma. The better understanding of PD-1/PD-L1 and IL-
17A provided by this review draws attention to possible 
interactions occurring in the tumor microenvironment that 
may aid in finding novel and promising immunotherapeu-
tic targets for curing lymphoma. However, further in vitro 
and in vivo research is needed to develop and implement 
novel ways to combat tumors.
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