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Abstract
Background: We aimed to establish a novel diagnostic model for kidney diseases by combining artificial intel-
ligence with complete mass spectrum information from urinary proteomics.
Methods: We enrolled 134 patients (IgA nephropathy, membranous nephropathy, and diabetic kidney disease) 
and 68 healthy participants as controls, with a total of 610,102 mass spectra from their urinary proteomic pro-
files. The training data set (80%) was used to create a diagnostic model using XGBoost, random forest (RF), a 
support vector machine (SVM), and artificial neural networks (ANNs). The diagnostic accuracy was evaluated 
using a confusion matrix with a test dataset (20%). We also constructed receiver operating-characteristic, Lo-
renz, and gain curves to evaluate the diagnostic model.
Results: Compared with the RF, SVM, and ANNs, the modified XGBoost model, called Kidney Disease Classifier 
(KDClassifier), showed the best performance. The accuracy of the XGBoost diagnostic model was 96.03%. The 
area under the curve of the extreme gradient boosting (XGBoost) model was 0.952 (95% confidence interval, 
0.9307–0.9733). The Kolmogorov-Smirnov (KS) value of the Lorenz curve was 0.8514. The Lorenz and gain 
curves showed the strong robustness of the developed model.
Conclusion: The KDClassifier achieved high accuracy and robustness and thus provides a potential tool for the 
classification of kidney diseases.
Keywords: Kidney disease classification, urinary proteomics, machine learning algorithm, diagnosis, artificial 
intelligence

Introduction

Chronic kidney disease (CKD) has become a major public 
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health problem and significant burden globally owing to 
its global incidence rate of >10% [1, 2]. Persisting renal 
damage and loss of renal function are the main clinical 
characteristics of CKD. Despite the continuous effort of 
nephropathologists, the incidence, prevalence, mortality 
rate, and disability-adjusted life-years of CKD remain 
extremely high and have even increased significantly in 
recent decades [2]. Kidney diseases are mainly evalu-
ated on the basis of persistent proteinuria, hematuria, and 
clinical impairment of the renal function, and decreased 
glomerular filtration rate (GFR) [3, 4]. However, the 
clinical characteristics of kidney diseases with different 
pathological categories are obviously different, including 
primary glomerular diseases such as immunoglobulin A 
(IgA) nephropathy (IgAN) and membranous nephropathy 
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(MN), and secondary glomerular diseases such as diabetic 
kidney disease (DKD). To improve the outcomes of CKD, 
strategies to distinguish kidney diseases more easily and 
early and more precise treatment methods are important.
With the innovation of puncture biopsy technology, renal 
biopsies have become the most critical technology for the 
pathological diagnosis and elucidation of various kidney 
diseases in recent years [5-7]. Renal biopsy is the gold 
standard for diagnosis, treatment, and predicting the prog-
nosis of kidney diseases through a pathological analysis. 
A series of important advances in renal pathology have 
promoted the understanding of the pathogenesis of renal 
diseases. In the future, an artificial intelligence-assisted 
pathological analysis tool will expand the understanding 
of renal pathological lesions and the pathogenesis of kid-
ney disease [7-9]. However, as an invasive procedure, kid-
ney biopsy may incur some ineluctable complications, of 
which the most frequent is macrohematuria with or with-
out the need for blood transfusion [10, 11]. In addition, 
many patients could not undergo renal biopsy because of 
relative or absolute contraindications. Therefore, the iden-
tification of novel noninvasive biomarkers or development 
of methods to improve the diagnostic efficiency, monitor-
ing, and treatment of CKD is needed.
Some existing studies have shown that urine, serum me-
tabolite, and protein have potential clinical applications 
as biomarkers [12-14]. Proteins are considered the final 
products of gene-environment interactions and a physi-
ological steady-state. A single highly specific and unique 
biomarker (e.g., an M-type phospholipase A2 receptor for 
MN) is certainly the best choice [15]; however, such bio-
marker is unavailable for clinically noninvasive diagnosis 
of numerous kidney diseases such as IgAN or DKD. The 
measurement of the levels of various urinary proteins can 
be combined with the use of available clinical biochem-
istry indexes, which have potential usefulness for clinical 
diagnosis, patient stratification, and therapeutic monitor-
ing [16]. Proteomics provides new insight into biomarker 
discovery and has dramatically widened our appreciation 
of pathological mechanisms. New analytical tools with 
high accuracy have made proteomics easier and quantifi-
able, allowing the acquisition of information from biologi-
cal samples [17].
The mass spectra of urinary proteomes produced by liquid 
chromatography tandem mass spectrometry (LC-MS/MS) 
are big data sets containing rich information. The existing 
software cannot interpret all spectral information. With 
the development of mass spectrometry and machine learn-
ing algorithms, the extraction of spectrum features from 
the urinary proteome of each disease entity by using an 
advanced mass spectrometer and machine learning algo-
rithms can save a lot of time and lead to a more accurate 
reporting of results. Therefore, we believe that the use of 
all mass spectral information from a urinary proteome, as 
provided through advanced mass spectrometry, can be an 
effective potential research direction to improve the accu-
racy of CKD diagnosis.
In this study, we trained and validated a diagnostic ma-
chine learning model using more than 600,000 mass spec-

tra from the urinary proteomes produced using LC-MS/
MS in patients with CKD. This method permits the rapid 
extraction of spectrum features from human urine (in-
cluding soluble proteins, exosomes, and other membrane 
elements). We compared four machine learning models, 
namely an artificial neural network (ANN), a support vec-
tor machine (SVM), a decision tree (DT), and extreme 
gradient boosting (XGBoost). We chose the most accurate 
model and evaluated its performance in the classification 
of patients with CKD and healthy controls (HC). Finally, 
the XGBoost model, called Kidney Disease Classifier 
(KDClassifier), showed the best performance in distin-
guishing different patients with CKD by using the mass 
spectra from the urinary proteomes of the patients with 
IgAN, MN, and DKD and the HC group. The mass spec-
tra data on the urinary proteomics were deposited into the 
ProteomeXchange Consortium through the PRIDE partner 
repository using the dataset identifier PXD018996.

Materials and methods

Study population

All patients and health controls were recruited from Sich-
uan Provincial People’s Hospital from September 2019 to 
May 2020. Written consent was obtained from the partici-
pants prior to the physical examination or biopsy proce-
dure. All the participants were recruited on a voluntary ba-
sis. Our study samples were considered representative of 
the Chinese population. The study protocol was approved 
by the medical ethics committee of Sichuan Provincial 
People’s Hospital and West China Hospital.
In this study, 202 urine samples from patients with IgAN (n 
= 50), MN (n = 50), and DKD (n = 34) and HCs (n = 68) 
were collected in tubes in accordance with the standard 
hospital operating procedures. All the patients with kidney 
diseases were examined through a renal biopsy, and those 
with secondary types of IgAN or MN were excluded. The 
urine samples were collected within 1 week before the 
renal biopsy. Briefly, the midstream urine from the sec-
ond morning void was collected in appropriate containers 
and centrifuged at 1,000×g for 20 min. The precipitate 
was discarded, and 500 μL of the supernatant (includ-
ing the soluble proteins, exosomes, and other membrane 
elements) was collected in a 1.5-mL tube and stored at 
−80°C until use.

Urinary protein digestion

Human urinary protein digestion was performed using a 
filter-aided sample preparation. Each 100-μL urine super-
natant was loaded onto a 30-kDa ultrafiltration device. Af-
ter centrifugation at 13,000×g for 15 min, a 100-μL uranyl 
acetate (UA) solution with 20 mM dithiothreitol was 
added and reacted for 4 h at 37°C. An alkylation reaction 
was then achieved by adding a 100-μL UA solution with 
50 mM iodoacetamide and incubated in the dark for 1 h at 
room temperature. The buffer was replaced with 50 mM 
ammonium bicarbonate. Finally, 10-μg trypsin was added 
to each filter tube, and the reaction was maintained for 16 
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h at 37°C. The digestion was collected, and the measured 
concentration was 480 nm. The urinary protein digestions 
were freeze-dried and stored at −80°C.

Mass spectrometric analysis

A urinary peptide analysis was performed using an Or-
bitrap Fusion Lumos mass spectrometer (Thermo Fisher 
Scientific, Waltham, MA, USA). Briefly, the peptides 
were dissolved in 0.1% fulvic acid (FA) and separated into 
a column with a 75-μm inner diameter and 15-cm length 
over a 78-min gradient (buffer A, 0.1% FA in water; buf-
fer B, 0.1% FA in 80% ACN) at a flow rate of 300 nL/min. 
MS1 was analyzed with a scan mass range of 300–1,400 
at a resolution of 120,000 at 200 m/z. The radiofrequency 
lens, automatic gain control (AGC), maximum injection 
time (MIT), and exclusion duration were set at 30%, 5.0 
e5, 50 ms, and 18 s, respectively. MS2 was analyzed in 
data-dependent mode for the 20 most intense ions. The 
isolation window (m/z), collision energy, AGC, and MIT 
were set at 1.6, 35%, 5.0 e3, and 35 ms, respectively.

Spectral establishment

The raw mass spectrometric data were converted into 
mascot generic format (MGF) files, with each file contain-
ing thousands of pieces of mass spectrum information. 
The x-coordinate was the mass-to-charge ratio (m/z), and 
the y-coordinate was the relative peak intensity. The mass 
spectra from each file were used to profile the urinary pro-
teome of each patient. The mass spectrometric data from 
the urinary proteomics were deposited in the ProteomeX-
change Consortium through the PRIDE partner repository 
with the dataset identifier PXD018996.

Data preprocessing

The mass spectra contained four classes of CKD urinary 
proteomic information (IgAN, MN, DKD, and HC). The 
MGF files were processed using an illumination normal-
ization method. The data of all the original urinary pro-
teomic mass spectra were transformed into double-column 
arrays of indefinite lengths (with the abscissa and ordinate 
values of the peaks in the spectrum). Owing to the un-
equal lengths of the arrays, we set an array with a length 
of 50 rows (the maximum value). We then merged each 
double-column array into a single feature data line with a 
length of 100. Data of insufficient length were considered 
missing values. Finally, a data set with four different data 
labels (IgAN, MN, DKD, and HC) was created and im-
ported into the XGBoost model.

XGBoost model

XGBoost, developed by Chen et al., is a machine learn-
ing technique that assembles weak prediction models 
[18]. It generates a series of decision trees in a gradient-
boosting manner, which means that it generates the next 
decision tree based on the current tree to better predict the 
outcome. After training, a classification prediction system 
composed of a series of decision trees is achieved. This is 
an extendible and cutting-edge application of a gradient 
boosting machine and has been proven to push the limits 
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of computing power for boosted tree algorithms. Gradient 
boosting is an algorithm in which new models are cre-
ated for predicting the residuals of the prior models and 
then adding them together to make the final prediction. 
A gradient descent algorithm is used to minimize the loss 
during the addition of the new models. XGBoost with 
a multi-core central processing unit reduces the lookup 
times of the individual trees created. With this algorithm, 
the K additive function ensemble model (K trees) is de-
fined as follows:

                                                                                         (1)

where  indicates the  sample, F is the space containing all 
trees, and  refers to the  function in the functional space F.
To train the ensemble model, the objective is minimized 
as follows:

                                                                                         (2)

Here,  is a loss function that measures the difference be-
tween the target  and the prediction . In addition,  penal-
izes the complexity and is defined as

.                                                                                       (3)

The number of leaves in a tree is defined as T; in addition,  
indicates the minimum loss reduction,  is the weight of the 
regularization, and  represents the corresponding score of 
the leaves.
The XGBoost algorithm can handle missing data automat-
ically by adding a default direction for the missing values 
in each tree node. The default direction is learned during 
the training procedure. When a value is missing in the 
validation data, the instance is classified into the default 
direction. This means inputting only a reduced number of 
important variables while leaving the others as null values 
during the application stage.
We maintained 20% of the data as the validation set and 
used the remaining 80% to train our diagnosis XGBoost 
model. The hyperparameters used in our analysis were as 
follows: learning rate = 0.01, minimum loss reduction = 
10, maximum tree depth = 10, number of subsamples = 
0.8, number of trees = 300, and number of rounds = 100. 
A simultaneous grid search over gamma, reg lambda, 
and the subsample was used to reexamine the model and 
check for differences between the optimum values.

Other machine learning models

Random forest (RF) is a type of classifier that uses ran-
domly generated samples from existing situations and 
consists of multiples trees [19]. To classify a sample, each 
tree in the forest is given an input vector, and a result is 
produced for each tree. The tree with the most votes is 
chosen as the result. RF divides each node into branches 
by using the best randomly selected variables on each 
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node.
A SVM is a controlled classification algorithm based on 
the statistical learning theory [20]. The working principle 
of a SVM is based on the prediction of the most appro-
priate decision function that separates the two classes; in 
other words, on the basis of the definition of a hyperplane, 
it can distinguish two classes from each other in the most 
appropriate manner possible. Similar to a classification, 
kernel functions are used to process nonlinear states dur-
ing the regression. In cases in which the data cannot be 
separated linearly, nonlinear classifiers can be used in-
stead of linear classifiers. A SVM transforms into a high 
dimensional feature space, which can be easily classified 
linearly from the original input space by means of a non-
linear mapping function. Thus, instead of finding values 
by repeatedly multiplying them using kernel functions, the 
value is directly substituted in the kernel function, and its 
counterpart is found in the feature space. Thus, this does 
not require dealing with a space with a very high dimen-
sional quality. A SVM has four widely used kernel func-
tions, namely linear, polynomial, sigmoid, and radial basis 
functions.
Artificial neural networks (ANNs) compose an infor-
mation processing system inspired by biological neural 
networks and include some performance characteristics 
similar to those of biological neural networks [21]. The 
simplest artificial neuron consists of five main components 
as follows: inputs, weights, transfer function, activation 
function, and output. In an ANN, neurons are organized 
in layers. The layer between the input and output layers 
is called the hidden layer. The network is regulated by 
minimizing the error function. The connection weights 
are recalculated and updated to minimize the error. Thus, 
it is aimed at bringing output values that are closest to the 
ground truth values of the network.

Performance evaluation and statistical analysis

We divided all mass spectrum data from the CKD urinary 
proteomics into a training data set (80%) and a validation 
data set (20%). The training data set was directly used to 
train the framework and create a diagnostic model using 
XGBoost, RF, a SVM, and an ANN. The validation data 
set was used to calculate the diagnostic accuracy. We com-
pared the accuracy of the four machine learning models 
and constructed a confusion matrix to calculate the sensi-
tivity, specificity, positive predictive value, and negative 
predictive value of the XGBoost diagnostic model.
We also constructed ROC curves for the CKD diagnostic 
model. We calculated the area under the curve (AUC) of 
the ROC curves to evaluate the prediction capabilities of 
the diagnostic model. Lorenz and gain curves were then 
constructed to evaluate the goodness of fit of the XGBoost 
diagnostic model.
The Lorenz and gain curves were established as graphi-
cal representations of the econometric distribution. These 
have been proven to be valuable analytic tools in other 
fields as well, including the evaluation of classifier mod-
els. Kendall and Stuart introduced a Lorenz curve ar-
ranged in ascending order according to the probability 

returned by the classification model. The divided points 
from dividing 0-1 equally into N parts are the threshold 
(abscissa), and the true positivity rate (TPR) and false 
positivity rate (FPR) are calculated. By taking the TPR 
and FPR as ordinates, two curves, both Lorenz curves (or 
KS curves), are drawn. The cutoff point (KS value) is the 
position where the distance between the TPR and FPR 
curves is the largest. A KS value of >0.2 is considered 
to indicate good prediction accuracy. The gain plot is an 
index used to describe the overall accuracy of the classi-
fier models. With an increase in depth, the gain rate of the 
classifier model is compared with the natural random clas-
sification model. The steeper the curve and the larger the 
slope, the better the TPR obtained by the model.
Continuous variables are expressed as the mean ± stan-
dard deviation and compared using a t-test. Categorical 
variables are expressed as percentages, and a chi-square 
test or Fisher exact test was used to compare the differ-
ences in the variables. The SPSS version 22.0 software 
(IBM Corp) was used for the comparative analysis of the 
basic characteristics. The machine learning models were 
developed using Python 3.4.3 (using the XGBoost, DF, 
SVM, and ANN libraries). In the evaluation and analysis 
method for determining the performance of the XGBoost 
model (KDClassifier), R version 3.5.2 was applied (using 
the pROC, dplyr, caret, lattice, and ggplot2 packages). 
The 95% confidence intervals (CIs) were then calculated. 
All P-values were two-tailed, and a P-value < 0.05 was 
considered statistically significant.

Results

Basic characteristics of kidney disease data set

In this study, we enrolled 134 CKD patients with different 
pathological classifications (IgAN, n = 50; MN, n = 50; 
and DKD, n = 34) and 68 healthy controls (HCs; n = 68). 
Their characteristics are shown in Table 1. The sex ratio in 
each of the four groups was between 0.5 and 2. The mean 
ages of the subjects in the four groups were ranked from 
oldest to youngest in the order of the DKD, MN, HC, and 
IgAN groups. The difference in mean age was statistically 
significant (P < 0.01, analysis of variance). However, this 
was consistent with the age distribution trend of the dif-
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Items IgAN MN DKD HC
No. of 

patients 50 50 34 68

Female 25 (50%) 25 (50%) 12 (35%) 47 (69%)

Male 25 (50%) 25 (50%) 22 (65%) 21 (31%)

Age (in 
years)* 37±14 51±13 52±10 45±12

Average no. 
of spectra of 
each patient

3310±214 3023±167 1320±256 3434±198

“*” means P < 0.01.

Table 1. Basic information of the patients and healthy control group 
group.
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ferent types of kidney disease.
The study workflow is shown in Figure 1. The urinary 
proteome was treated using an ultrafiltration tube-assisted 
digestion method that can maintain urinary exosomes and 
other membrane elements. Tryptic peptides were then ana-
lyzed using a high-resolution mass spectrometer. Finally, a 
total of 610,102 urinary proteomic mass spectra were pro-
duced for training and validation of the diagnostic model, 
including 165,521, 151,159, 46,187, and 247,235 spectra 
from the IgAN, MN, DKD, and HC groups, respectively. 

All spectra in each group were randomly divided into a 
training data set (80%) and a validation data set (20%). As 
shown in Figure 2, the distribution of the different patient 
types in the training and validation data sets and the pro-
portions of the kidney disease types were nearly consis-
tent.

Comparison of diagnostic accuracy between XGBoost 
and other machine learning models

After training, the accuracy of the diagnostic XGBoost 
model was validated to be 96.03% (95% CI, 95.17%–
96.77%; Table 2). The kappa value was 0.943, and the P 
value from the McNemar test was 0.00027, which indicate 
the perfect performance of XGBoost. The RF, SVM, and 
ANN models were trained in the same way, with accuracy 
rates of 92.35%, 86.12%, and 87.28%, respectively. The 
accuracy rates of all the machine learning models tested 
were relatively high. However, compared with the other 
models, XGBoost achieved the best performance and was 
thus applied as our machine learning algorithm (Table 2).

Classification performance of the kidney disease diag-
nostic XGBoost dodel

To characterize the performance of the diagnostic XG-
Boost model for the different types of kidney diseases, we 
compared the predictive ability of this model for the three 
types of kidney disease and HCs. We chose 20% of the to-
tal data set for the test. Although the number of test errors 
was large, the error rate was low.
As shown in Table 3 and Figure 3, the false positivity 
rates of the four disease types (IgAN, MN, DKD, and HC) 
were 2.76%, 5.73%, 10.19%, and 2.37%, respectively. The 
XGBoost model achieved the highest error rate for DKD 
and the lowest error rate for IgAN. The accuracy rates for 
the three types of kidney disease and HCs were 97.67%, 
96.64%, 94.86%, and 97.35%, respectively (Table 4). Al-
though the accuracy of the diagnosis of each of the four 
disease types was extremely high, the diagnostic accuracy 
for DKD was the lowest. Comparing four performance 
items, namely sensitivity, specificity, positive predictive 
value, and negative predictive value, we found that the 
positive predictive rates for the IgAN and HC groups were 
relatively low, as was the sensitivity for both the MN and 
DKD groups. In addition, we specifically analyzed the 
misclassification of the four types. As shown in Figure 4, 
the IgAN and MN groups were relatively easily misjudged 
as the HC group, whereas the DKD and HC groups were 
relatively easily misjudged as the IgAN group.

Evaluation of the diagnostic XGBoost model for kid-
ney disease

The discrimination ability of the XGBoost diagnostic 
model for kidney disease was assessed on the basis of the 
ROC curve and AUC (Figure 5).
The AUC of this model was 0.952 (95% CI, 0.9307–
0.9733), demonstrating a strong generalization. In addi

Discussion

Figure 1. Workflow of spectrum analysis from urinary proteomics based 
on machine learning for classification of kidney diseases.

Figure 2. Proportion of three types of CKD and healthy control samples 
for (A) training and (B) validation of the XGBoost model.
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Figure 3. Bar chart of the diagnosis error rate of three types of CKD 
patients and healthy control group for validation dataset of the XGBoost 
model.

Model
Prediction type

Total
False False rate 

IgAN MN DKD HC NO. (1-Sens-
itiviy)

IgAN 31700 250 50 600 32600 900 2.76%

MN 650 28800 50 1050 30550 1750 5.73%

DKD 300 250 9250 500 10300 1050 10.19%

HC 750 400 0 47450 48600 1150 2.37%

Total 33400 29700 9350 49600 122050 48 0 3.97%

Table 3. Confusion matrix of XGBoost for diagnosis of chronic kidney 
diseases.

Figure 4. Bar chart of misclassification for three types of CKD patients 
and healthy control group.

Figure 5. Receiver operating curve (ROC) for estimating the discrimina-
tion of XGBoost.

Model
Accuracy (CI 95%)

Training dataset Validation dataset

Random Forest 96.36% 
(95.63%~97.18%)

92.35% 
(91.28%~94.23%)

Support Vector 
Machine

92.67% 
(89.56%~93.43%)

86.12% 
(84.28%~89.71%)

Artificial Neural 
Networks

95.12% 
(93.96%~96.71%)

87.28% 
(84.27%~90.16%)

XGBoost 99.21% 
(98.89%~99.48%)

96.03% 
(95.17%~96.77%)

Table 2. Accuracy of different models in training and validation datasets.

tion, the slope of the gain curve was adequately steep. 
When the test sample rate was 18.7%, the TPR of the 
model reached 92.3%, which is high (Figure 6).
The KS value of the Lorenz curve was 0.8514, which is 
much higher than 0.2 (Figure 7). The gain and Lorenz 
curves also demonstrated the strong robustness of the 
model.

Items IgAN MN DKD HC
Sensitivity 97.24% 94.27% 89.81% 97.63%

Specificity 98.10% 99.02% 99.91% 97.07%

Pos-Pred-Value 94.91% 96.97% 98.93% 95.67%

Neg-Pred-Value 98.98% 98.11% 99.01% 98.41%

Balanced accuracy 97.67% 96.64% 94.86% 97.35%

Table 4. Performance of XGBoost model for diagnosis of chronic kidney 
diseases.

Figure 6. Gain plot for evaluating the overall diagnostic accuracy of the 
XGBoost model.
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CKD represents a major public health issue in terms of its 
substantial financial burden and consumption of health-
care resources [1]. In addition, it is a risk factor of hy-
pertension and cardiovascular diseases, which together 
constitute a substantial cause of death in most societies 
[22]. Accurate identification and early screening of CKD 
in the population have long been important topics. The de-
velopment of a noninvasive and accurate early diagnostic 
method is needed. The diagnostic ability of a single bio-
marker is slightly weak, and renal biopsy is invasive, with 
a risk of major bleeding. With the development of mass 
spectrometry, urinary proteomes can now be both quanti-
tatively and qualitatively detected [17]. Our study was fo-
cused on artificial intelligence-assisted noninvasive diag-
nostic methods for different types of kidney disease based 
on mass spectra information from urinary proteomics.
Previous studies showed that measurement of the level of 
a single protein marker in the clinical diagnosis of CKD 
does not take advantage of the overall value and macro 
efficiency of proteomics [17]. In addition, the feasibility 
of using a single protein marker in the clinical diagnosis 
of CKD requires further research and validation. The use 
of several or even dozens of protein panels can improve 
the diagnostic accuracy. The existing mass spectrometry 
applied in proteomics is used in the identification of dif-
ferential proteins and selection of individual proteins for 
further differential studies. In fact, the overall data from a 
mass spectrometric analysis is not applied. Moreover, the 
efficacy of its clinical application requires further evalua-
tion. By using big data, machine learning can be applied 
by integrating all information from a mass spectrometric 
analysis. We analyzed all data to take full advantage of 
the overall efficiency of proteomic mass spectrometry. 
Therefore, for CKD classification, considering the com-

prehensiveness of a mass spectrum analysis, as the feature 
data of our AI algorithm, we applied a first-order mass 
spectrum analysis of the proteomics without further pro-
cessing. Artificial intelligence algorithms such as ANNs, 
SVMs, DTs, and XGBoost combined with medical or 
biological experience have obtained remarkable results 
[23, 24]. Through the training of big data sets, a machine 
learning model can predict classifications. Machine learn-
ing outperforms the conventional statistical methods with 
its ability to better identify variables, achieve a better 
predictive performance and modeling of complex rela-
tionships, and learn from multiple modules of data, and 
its robustness against data noise. It has therefore been ap-
plied in the diagnosis of certain diseases such as lung can-
cer [25], cardiovascular disease [26], and chronic kidney 
disease [27]. Machine and deep learning algorithms can 
not only impute missing data in the training sets but also 
identify existing characteristics that are otherwise unrec-
ognizable. Most existing diagnostic machine models for 
CKD are based on records and detection indicators that 
are currently used in clinical practice [28]. However, the 
training data types of these models vary, and the accuracy 
of artificial collection is relatively low, with poor clini-
cal application. To date, no studies have been conducted 
on machine learning models for diagnosis based on the 
full spectra of CKD urinary proteomics. In addition, of 
the many existing machine learning models, XGBoost 
achieved an outstanding classification performance with-
out a high computation time and is a practical approach. 
XGBoost is a type of tree-structured model, the basic idea 
of which is to design an ensemble approach for several 
rule-based binary trees. XGBoost is derived from the most 
famous tree ensemble method, called gradient boosting 
decision tree. XGBoost has gained popularity by winning 
numerous machine learning competitions since its initial 
development [18]. Advances in big data and artificial in-
telligence have enabled clinicians to process information 
more efficiently and make diagnosis and treatment deci-
sions more accurately [29]. It is unquestionable that big 
data and artificial intelligence are transforming medicine 
from various perspectives, including precision medicine 
and clinical intelligence. On the basis of the big data ap-
plied in urinary proteomic mass spectra, the strategy of us-
ing artificial intelligence and machine learning algorithms 
has been used to provide a new direction for the classifi-
cation of kidney diseases. To the best of our knowledge, 
our study is the first to combine artificial intelligence and 
urinary proteomic mass spectra information in the diagno-
sis and classification of kidney diseases.
Compared with RF, SVM, and ANNs, the XGBoost mod-
el with mass spectra information for urinary proteomics 
showed a perfect performance in the diagnosis of kidney 
diseases. This is consistent with the classification abil-
ity of XGBoost models when applied for other clinical 
diseases. Therefore, compared with other machine learn-
ing algorithms, the advantages of the XGBoost algorithm 
are as follows [30]: First, XGBoost adds a regularization 
term to the objective function, which reduces the variance 
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Figure 7. Lorenz curve (KS curve) for evaluating the goodness of fit 
of the XGBoost model diagnosis. The red, blue, and green lines are the 
true positive prediction rate, the false positive prediction rate, and the 
distance between the true positive prediction rate and the false positive 
prediction rate, respectively. The Lorenz value is the threshold value cor-
responding to the farthest distance between the red and blue lines, which 
is the threshold value that can best divide the model.
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of the model, simplifying the model while preventing an 
overfitting. Second, XGBoost used not only the first deriv-
ative but also the second derivative to make the loss more 
accurate. Third, when the training data are sparse, the 
default direction of the branch can be specified for a miss-
ing or specified value, which can significantly improve the 
efficiency of XGBoost. Fourth, XGBoost supports column 
sampling and parallel optimization, thereby reducing the 
number of computations and improving efficiency. The 
peak value of the urine proteome mass spectrometry data 
is presented in the form of a set of numbers in abscissa 
and ordinate coordinates, which is used in the construction 
of the XGBoost model to maximize such advantages.
In our study, the overall accuracy of the diagnostic XG-
Boost model for the four disease groups was 96.03%, 
which is basically consistent with the accuracy of renal 
biopsy. Therefore, our study highlights the advantages 
of using a noninvasive diagnostic method as an artificial 
intelligence model in proteomics. In addition, we con-
ducted a detailed assessment of the modelling accuracy 
for each type of kidney disease and the HCs. The speci-
ficity of the diagnostic model for the four disease types 
was >95% (97.07%–99.91%); thus, its misdiagnosis rate 
is extremely low, and its ability to distinguish each type 
of disease shows excellent stability. Although the sensi-
tivity for the four disease types was approximately 90% 
(89.81%–97.63%), the sensitivity for the three types of 
kidney disease, excluding the HC group, was lower than 
the specificity. Therefore, the missed diagnosis rate of this 
model is higher than its misdiagnosis rate, which indicates 
that this model may be more suitable for accurate dis-
ease diagnosis than for disease screening. The next steps 
of this research will focus on improving the prediction 
sensitivity of the model. For all four disease types, the 
sensitivity of the model regarding DKD diagnosis was the 
worst (89.81%), probably because of the smaller number 
of patients with DKD included, smaller mean number of 
spectra, or significant differences with the other disease 
groups. The low mean number of urinary proteomic mass 
spectra is a response to the state of the real disease, which 
cannot be avoided. We hope to include more samples in 
our future study to reduce the problems caused by data 
imbalance. In addition, through analyses of the ROC 
curve, gain plot, and Lorenz curve, this study showed that 
the model achieved strong robustness and high accuracy.
At present, a few existing XGBoost models for kidney 
disease diagnosis have been constructed using data on the 
clinical characteristics and individual laboratory test in-
dicators. Ogunleye et al. [7] enrolled 250 CKD cases and 
150 HCs to train and validate the XGBoost model with 22 
clinical features. The accuracy, sensitivity, and specific-
ity of the XGBoost model were all 100%. Xiao et al. [27] 
also constructed a XGBoost model for the prediction of 
CKD progression in 551 patients with proteinuria. A total 
of 13 blood-derived tests and 5 demographic features were 
used as variables to train the model. The accuracy of this 
progression model was 0.87. By applying 36 characteris-
tics of 2,047 Chinese patients from 18 renal centers, Chen 
et al. [31] used a XGBoost model for the prediction of 

end-stage CKD. The C statistical value of this XGBoost 
model was 0.84. As all of these reports were constructed 
using clinical information and outcome indicators were 
inconsistent, poor comparability with our diagnostic XG-
Boost model was achieved. However, the accuracy of our 
model is high.
The KDClassifier classified the characteristic differences 
of the pathological types of CKD at the level of the in-
tegrated information of mass spectrometry proteomics 
in urine. No specific proteins or laboratory indicators of 
clinical concern have been identified, such as GFR, urine 
protein, or creatinine. This is significantly different from 
our normal assumption. The information captured by a 
machine learning model is more abundant than that ob-
tained using comparative analysis of differential proteins. 
To explain the specific content of the information captured 
by machine learning with human logic requires further 
research and discussion.
Overall, the KDClassifier, an XGBoost diagnostic model, 
established in this study showed its feasibility and supe-
riority for clinical application. However, in terms of eco-
nomics, the current cost of mass spectrometry analysis of 
proteomics is relatively high, and realization of its clinical 
application will still take a long time. With further innova-
tions in science and technology, however, we expect the 
cost of mass spectrometric analysis to inevitably decline. 
The KDClassifier is not only suitable for the classifica-
tion of the three types of kidney disease considered but 
also has the potential to be extended to all types of kidney 
disease. The diagnostic advantages of this model will be 
fully demonstrated.
Our study also has certain limitations. First, the cohort 
used was not from a prospective trial, and selective bias 
was inevitable. Second, only three common types of kid-
ney disease were included. Whether this learning machine 
diagnostic method is suitable for other types of kidney 
disease needs further research and validation using a larg-
er sample size. Third, owing to the relatively small sample 
size, we did not include more clinical parameters for an 
artificial intelligence-assisted analysis. Including more 
clinical data will further improve the diagnostic power of 
our model. Fourth, this study only compared four main-
stream machine learning methods with certain limitations. 
Fifth, only the mass spectra of urinary proteomic informa-
tion were used, and the clinical information of the patients 
was omitted. If both types of information are combined, 
patients can be better diagnosed. We expect to develop 
more suitable artificial intelligence algorithms for a nonin-
vasive and accurate diagnosis of kidney diseases.

Conclusion

In conclusion, the KDClassifier, a machine learning clas-
sification model that applies information on mass spectra 
from urinary proteomics, showed high accuracy in the 
diagnosis of different types of CKD. This study provides 
new insights into the application of artificial intelligence 
in the accurate and noninvasive diagnosis of kidney dis-
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eases. In addition, the KDClassifier provides a potential 
tool for the classification of all types of kidney disease.
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