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Resilience to acute sleep deprivation is associated with at-
tenuation of hippocampal mediated learning impairment
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Abstract
Background: Sleep deprivation is a universal issue that affects individuals in different ways. While some 
individuals experience a deficit in performance, others experience resiliency as they maintain high levels of 
physical and mental activity. Sleep loss is known to cause cognitive dysfunction in areas such as learning and 
memory, but little is known about neural mechanisms that contribute to resilience to this adverse effect. 
Methods: An existing database of a learning paradigm in sleep deprived and non-sleep deprived 16 to 
18-month old C57BL/6 mice was used to identify fast learners and slow learners based on an R2 value repre-
senting the learning curve of each individual mouse. 
Results: Results showed that sleep deprived mice had more slow learners compared to fast learners whereas 
non-sleep-deprived mice showed the opposite.  Hippocampal immunohistochemistry and digital imaging anal-
ysis showed sleep deprived, fast learners expressed lower levels of monocyte chemoattractant protein-1 and 
histone deacetylase 2 and higher levels of synaptophysin and brain-derived neurotrophic factor compared to 
sleep-deprived slow learners. 
Conclusions: These observations provide evidence to suggest that sleep-deprived mice that performed well in 
a cognitive assay show less hippocampal mediated learning impairment and provide the rationale for further 
investigations into neurobiological resilience to sleep deprivation with increasing age. 
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Introduction

Environmental adversity can often lead to stress as a bio-
logical reaction. The human body reacts to stress by acti-
vating the hypothalamic-pituitary-adrenal (HPA) axis and 
producing stress hormones such as glucocorticoids and 
cortisol [1]. Dysregulation and chronic exposure to the 
stress response can then lead to adverse health outcomes. 
However, stress does not affect everyone in the same way. 
Individuals in the population who have enhanced stress 
resilience mechanisms can adapt successfully to stress 
without the burden of illnesses. Increased resiliency to 
stress also contributes to a slower aging process and im-
proved overall health and quality of life. Individuals that 
are less vulnerable to stress and its adverse health effects 

are deemed resilient [2].
The study of resilience is more common among younger 
study populations, but less so when it comes to older 
adults [3]. The aging process itself is one of the most 
challenging public health issues faced by developed coun-
tries. By 2050, the number of people over 65 years old is 
expected to reach 1.5 billion, nearly tripling the amount 
in 2010 [4]. This rapid demographic change will put more 
stress on various social infrastructure systems in countries 
around the world. With the growth in aged populations, 
there has been an expansion in initiatives and interven-
tions to promote successful aging [5]. The topic of resil-
ience is a rapidly growing field of interest in research, es-
pecially in older adults and the impact it has on successful 
aging. Aging well has many components, such as being 
free from chronic disease and maintaining a high level of 
physical and mental function [6].
Sleep is an essential component of energy conservation 
and homeostasis of multiple physiological and behavioral 
processes [7]. The American Academy of Sleep Medicine 
and the National Sleep Foundation recommend that adults 
sleep at least 7 hours per day [8, 9]; however, the increas-
ing demand for long work shifts and “around-the-clock” 

R
E

SE
A

R
C

H

Aging Pathobiology and Therapeutics 2020; 2(4):195-202  195 
DOI: 10.31491/APT.2020.12.040

* Corresponding author: Warren Ladiges
Mailing address: Department of Comparative Medicine, School 
of Medicine, University of Washington, Seattle, WA, USA.
Email: wladiges@uw.edu
Received: 30 November 2020 / Accepted: 15 December 2020

https://creativecommons.org/licenses/by-sa/4.0/


work has led to a marked reduction in the average sleep 
duration in developed countries [10, 11]. Sleep deprivation 
leads to numerous cognitive and behavioral effects, such 
as increased reaction to stress, emotional changes, and a 
lack of impulse control [12]. The issue of sleep loss has 
become so pervasive in society that the Center for Disease 
Control has recently elevated it to public health epidemic 
status [13]. However, research has also shown that some 
individuals are vulnerable while others are resistant to 
sleep deprivation [14, 15]; notably, this phenotypic sta-
bility is maintained across months and years [15]. Ap-
proximately a third of healthy adults show high levels of 
decreased performance when moderately sleep deprived. 
Another third displays moderate deficits while the final 
third shows little to no decrease in performance even with 
severe sleep loss. The underlying reasons for such dif-
ferential neurobehavioral vulnerability to sleep loss are 
mostly unknown and unexplained by demographic and 
other factors [16-18]. To date, there have been studies 
looking at different genetic approaches to relate biomark-
ers to sleep deprivation responses, although the specific 
mechanisms for these relationships are currently not fully 
understood [14]. 
Phenotypic characteristics of resilience to sleep depriva-
tion should be determined before investigating genetic dif-
ferences. In this regard, we have developed a mouse mod-
el of short-term sleep deprivation and a spatial navigation 
task (Box maze) designed to assess learning behavior in a 
time-effective and relatable manner [19]. Therefore, sleep 
deprivation as a stressor can be used to exploit the cogni-
tive impairments that arise thus facilitating the study of 
innate resiliency in individual mice [20-22]. In this study, 
we used an existing database of sleep-deprived mice and 
analyzed Box maze data from previous studies. We report 
that sleep-deprived mice that performed well in a Box 
maze cognitive learning assay show less hippocampal 
mediated learning impairment, providing the rationale for 
further investigations into neurobiological resilience with 
increasing age. 

Methods

Box maze database 

Data were used from a Box maze database that had been 
deposited for over two years on a shared Google drive 
representing a number of studies from the senior authors’ 
laboratory. The data used for this report were from 16 to 
18-month-old male C57BL/6 (B6) mice provided by the 
National Institute on Aging Aged Rodent Colony (Charles 
River, Inc). After extensive mining of all available data 
from the drive, a total of n = 40 mice were suitable for the 
hypothesis being tested. Half of the mice underwent learn-
ing assessment after being exposed to a short term sleep 
deprivation protocol while the remaining half were those 
kept on a standard sleeping cycle. Housing and mainte-
nance have been previously described [19].
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Grading platform 

The box maze produces data in the form of escape laten-
cies with four trials per mouse. This raw data can then 
be plotted on a graph through programs such as Excel, 
Graphpad Prism, etc. The grading platform further defines 
the escape latencies with a single value known as the co-
efficient of determination (R2). After plotting the raw data, 
a logarithmic trend line can be applied to the data points 
in which the R2 value and slope are observed for each 
mouse. If the slope is positive, the mouse is graded as a 
slow learner whereas mice with a negative slope tend to 
be fast learners. The logarithmic trend line was chosen as 
the most appropriate to describe the data points because a 
learning paradigm should be one in which the data quickly 
level off [23]. The R2 values range from 0 to 1 with 1 be-
ing close to the logarithmic trend line.

Immunohistochemistry  

Immunohistochemistry (IHC) was performed on 5 μm 
thick, paraffin-embedded mouse brain tissue mounted onto 
slides. Slides were rehydrated with xylene, decreasing 
concentrations of ethanol, and deionized water. Antigen 
retrieval was performed by immersing the slides in a hot 
water bath at 98 degrees C incubated in a 1:10 Citrate An-
tigen Retrieval solution in autoclaved deionized water and 
cooled down to room temperature for 20 minutes. Slides 
were then stained using an avidin-biotin horseradish 
peroxidase (HRP) kit (anti-rabbit HRP-3,3’-Diaminoben-
zidine (DAB) Cell & Tissue Staining Kit, R&D Systems 
Minneapolis, MN) with manufacturer instructions slightly 
modified for best staining outcome. Slides were applied 
with a 3% peroxidase blocking reagent for 15 minutes to 
quench endogenous peroxidase activity which reduces 
background noise on the final stain result. Slides were 
washed in Tris-buffered saline, 0.1% Tween® 20 Detergent 
(TBST) solution for 5 minutes. To reduce non-specific 
hydrophobic interactions between the primary antibody 
and the tissue, a serum blocking reagent was placed onto 
each section for 15 minutes. After draining the serum off 
of the slides, avidin blocking reagent was placed onto 
them for 15 minutes followed by a rinse with TBST for 5 
minutes. To prevent the binding of previously applied avi-
din, biotin blocking reagent was placed onto the slides for 
15 minutes. The primary antibody in TBST at the follow-
ing concentrations: histone deacetylase 2 (HDAC2)1/500 
(ab7029, Abcam, Cambridge UK), brain-derived neuro-
trophic factor (BDNF) 1/500 (ab108319, Abcam, Cam-
bridge UK), monocyte chemoattractant protein-1 (MCP-1) 
1/200 (ab25124, Abcam, Cambridge UK), Synaptophysin 
1/500 (ab32127, Abcam, Cambridge UK) was applied 
overnight in a humidified chamber. Slides were rinsed 3 
times in TBST for 5 minutes each, then incubated with 
a biotinylated secondary antibody for 30 minutes and 
rinsed 3 times in TBST for 5 minutes each. Slides were 
incubated in High Sensitivity Streptavidin (HSS)-HRP for 
thirty minutes and rinsed in TBST 3 times for 2 minutes 
each. DAB Chromogen was applied to slides and incubat-
ed in the solution for 5 minutes each before rinsing with 
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generates the heat map by assigning a color to each super-
pixel which indicates the different levels of DAB staining 
based on the previously described thresholds. However, 
the upper and lower bounds of the color spectrum must be 
set by the user and made equal for each new project. This 
way, the results within each project can be compared to 
one another relative to staining distribution and intensity 
across the hippocampus. It should be noted, however, that 
the color is not indicative of positivity, but rather captures 
the differences in intensity of the stain.

Statistics

Welch’s t-tests, Pearson Correlations, and graph creation 
were performed using Prism statistical software (Graphpad 
Software, La Jolla, CA, USA). The P-value was set for a 
statistical significance of P  <  0.05. All the data were pre-
sented as mean ± standard error of mean (SEM). 

Results

The box maze grading platform separated slow learners 
from fast learners

Upon analyzing the 20 sleep deprived and 20 control mice 
that were selected from the database of Box maze results, 
we found n = 6 fast learners in the sleep deprived group 
and n = 15 fast learners in the control group (Figure 1). 
Of a total of n = 40 middle-aged, C57BL/6 mice, n = 20 
were exposed to short-term sleep deprivation whereas 
n = 20 were a control group (non-sleep deprived). All 
n = 40 were analyzed through the grading platform to 
classify each mouse as either a fast learner or a slow 
learner based on the R2 value. In the n = 20 sleep deprived 
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Figure 1. Grading platform separation data. Of a total of n = 40 
middle aged, C57BL/6 mice, n = 20 were exposed to short term sleep 
deprivation whereas n = 20 were a control group (non-sleep deprived). 
All n = 40 were analyzed through the grading platform to classify each 
mouse as either a fast learner or a slow learner based on the R2 value. 
In the n = 20 sleep deprived mice, n = 6 were classified as sleep deprived, 
fast learners whereas n = 14 were sleep deprived, slow learners. In the 
n = 20 control mice, n = 15 were classified as control fast learners whereas 
n = 5 were control, slow learners. 

 deionized water for 5 minutes. Slides were dehydrated in 
an increasing concentration of ethanol and xylene then 
mounted with a coverslip.

Imaging and QuPath analysis 

IHC slides were photographed under a Nikon Eclipse 
E400 microscope with a Nikon D7100 camera through a 
microscope camera adaptor. All photos were taken under a 
magnification of 4x so that the entire hippocampus could 
be captured within each photo field. Photos were then up-
loaded onto a Google drive where slides were separated 
into project files organized by staining group.
QuPath version v0.2.0-m11 was downloaded from Github 
(https://QuPath.github.io/) [24]. When downloading, 
QuPath allows the user to determine how much random 
access memory (RAM) it will take up; so we determined 
6 GB would be sufficient for the analysis of the project. 
A new project was created on QuPath per each staining 
group examined. This step was done to avoid having to 
redo the steps of the project workflow for each image. 
First, the image type was set to hematoxylin and 3,3’-Di-
aminobenzidine (H-DAB) in order for QuPath to rec-
ognize the images as a DAB Chromogen stain. The red, 
green, and blue (RBG) values for DAB were then cali-
brated to better represent the project by selecting a region 
of interest (ROI) that is representative of positive stains 
along with the hippocampus. Smaller ROIs were used 
that selected only the smaller areas of positive staining to 
reduce any potential background noise. These ROIs were 
then averaged to come up with a new RGB DAB value 
for the project code. The hippocampus was then annotated 
with the polygon wand to only measure staining at the de-
sired region of the tissue. However, if there were any folds 
or staining irregularities through a manual check, the slide 
was omitted from the analysis. To quantify the staining, 
superpixels were created to analyze the hippocampus [25]. 
Within the annotated hippocampus, QuPath groups similar 
pixels into a cluster called a superpixel based on the RGB 
values set for DAB. The pixel-based analysis was chosen 
as the desired method of quantification because this study 
is looking at multiple stains, and pixel analysis allows us 
to follow an almost identical protocol between each group 
[25]. Superpixel size was set to 25 µm2 in order to balance 
capturing positively stained sections at a high resolu-
tion and processing speed. QuPath then applies a DAB 
intensity to each of the superpixels previously set by the 
initial DAB RGB calibrating. Not only does it process as 
positive or negative, but it also separates the staining at 
three levels of thresholds: 0.2, 0.4, and 0.6 or a positive 
at all three levels. This, therefore, allowed the capture of 
staining intensity across all positively stained cells in the 
annotated region. In order to visualize the DAB staining 
thresholds, a “heat map” was generated for each image 
[25]. QuPath allows users to apply a gradient of color ac-
cording to the quantifications of DAB staining generated 
previously. The heat map allows a qualitative complement 
of the previous analyses and serves useful in identifying 
certain regions that have higher levels of staining. QuPath 
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mice, n = 6 were classified as sleep deprived, fast learners 
whereas n = 14 were sleep deprived, slow learners. In the 
n = 20 control mice, n = 15 were classified as control fast 
learners whereas n = 5 were control, slow learners. 
Plotting the raw escape latencies for each mouse produced 
a graph that allowed the further distinction of fast and 
slow learners through utilizing the coefficient of determi-
nation. Fast learners had a sharper and more consistent 
decrease in latency time over the four trials when com-
pared to slow learners, which can be better modeled with 
a logarithmic trendline. Thus, fast learners had R2 values 
that were close to 1 while slow learners had R2 values 
close to 0. However, there were also mice with R2 values 
that ranged somewhere in the middle. After finding the av-
erage R2 value across n = 80 control mice, we set the fast 
learner threshold value at greater than 0.74 (Figure 2). 
The results from grading each mouse showed that among 
the sleep deprived group, more mice had R2 values below 
0.74 and were designated as slow learners. This meant 
that fewer mice were able to perform well on the learning 
assessment, presumably due to the synaptic impairment 
known to occur with the loss of sleep [26]. As hypoth-
esized, there was a smaller group of fast learners with R2 

values above 0.74 within the sleep deprived group that 
were able to maintain higher levels of cognitive function-
ing despite being exposed to sleep deprivation. 
The R2 values obtained from the grading platform were 
useful for comparing Box maze data of fast and slow 
learners with other variables such as sleep deprivation 
or staining intensity. Because raw Box maze data that is 
plotted has many factors to account for, such as escape la-
tency and the 4 trials per mouse, it is difficult to compare 
to other factors. Therefore, the grading platform provides 
additional value in that it is able to produce a single num-
ber to describe the learning curve across the four trials per 
mouse (Figure 3). 

Hippocampal staining thresholds in sleep-deprived fast-
learning mice were similar to that of nonsleep-deprived 
(control) fast-learning mice. 

Slides that were stained through immunohistochemistry 
and imaged were processed through the whole-image 
analyzing software program, QuPath [24]. The results, 
expressed in superpixels, showed that HDAC2, MCP-1, 
Synaptophysin, and BDNF levels in sleep-deprived, fast 
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Figure 2. Graph of raw 
escape latencies for fast 
and slow learners. Escape 
la tencies  for  a l l  n  =  40 
mice were plotted, and a 
logarithmic trendline was 
inserted. The R2 value was 
used to separate fast and 
slow learning mice. Mice 
with R2 values greater than 
0.74 were deemed as fast 
learners, while mice with R2 
values less than 0.74 were 
deemed as slow learners.
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learning mice were similar to that of the control, fast 
learning mice. HDAC2 is a histone deacetylase complex 
which indicates that some level of epigenetic alteration 
is occurring. HDAC2 functions to repress transcrip-
tional activity and therefore decreases the expression of 
DNA products in the brain [27]. There are many types of 
HDAC, but HDAC2 was of interest to our results because 
it negatively regulates memory formation and synaptic 
plasticity [28]. Sleep-deprived, fast learning mice had 
significantly reduced levels of HDAC2 when compared to 
that of slow learning mice (Figure 4B and C). MCP-1 lev-
els were also significantly reduced in the sleep-deprived 
fast-learning group which suggests that there was less 
neuroinflammation occurring in the hippocampus of mice 
that were graded as fast in their learning when exposed to 
short-term sleep loss [29]. Synaptophysin and BDNF were 
of interest to observe synaptic function and plasticity, re-
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Figure 3. Visualization of the grading platform formatted as a flow 
chart. By starting from the square at the top and working down the flow 
chart each mouse was categorized as a slow or fast learner based on 
learning graph data. The total study population was n = 40, and they were 
sorted as directed by the grading platform. 
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 Control - Fast Learner Sleep Deprived - Fast Learner Control - Slow Learner Sleep Deprived - Slow Learner

Positive Superpixel Signal
Low                         High

HDAC2

MCP-1

Synaptophysin

BDNF

Figure 5. Sagittal hippocampal sections were imaged at 40x and analyzed using QuPath. Visual representation of positive superpixels using a 
heat map. Rows represent staining groups while columns show graded groups for control or sleep-deprived mice. Staining intensity is based on a 
positive superpixel signal with dark blue suggesting lower levels, green being moderate, and red as high. The rows with HDAC2 and MCP-1 show 
that fast learners had higher amounts of blue signal whereas slow learners showed redder. The rows with Synaptophysin and BDNF showed that fast 
learners had higher amounts of red signal whereas slow learners showed more blue and green. Adapted in part from Lee et al [32]. 
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Figure 4. Positive Superpixel percentage in the hippocampus when stained with MCP-1, HDAC2, synaptophysin, and BDNF. (A) control mice, 
(B) sleep deprived mice, (C) fast learners, (D) slow learners. *Significant by Welch’s t-Test of control to sleep deprived groups in light of fast and 
slow learners (A, B) then fast to slow learners in regards to control and sleep deprived mice (C, D).
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spectively [30, 31]. Because levels of positive superpixels 
among the sleep-deprived fast learners and control fast 
learners were similar, these results showed that there are 
characteristic levels of protein expression in fast learning 
mice independent of sleep deprivation.
The independent t-tests performed also showed that the 
control group (Figure 4A) is relevant because the statistics 
are similar to the experimental group. We expected that a 
portion of the control group should also be slow learners 
to show the efficacy of the box maze and grading platform. 
It also shows that the resiliency of the sleep-deprived fast 
learners was significantly different from the slow learners. 
Overall, the control group in our study showed similarity 
to the experimental group in light of the sleep deprivation 
that was given to the experimental group.
The heat map was able to visualize these results in a qual-
itative way to show that there were higher levels of super 
positive pixels as indicated by a color gradient (Figure 5) 
of red being high and blue being low. The heat map also 
provided additional insight into the distribution of stain-
ing at different areas of the hippocampus. Overall, the 
heat map served as a qualitative understanding of all four 
strains that were tested through immunohistochemistry. 
It complemented the superpixel positivity with a quick 
visual understanding of what was being expressed by the 
superpixel data. 

Learning ability in sleep-deprived fast learners showed 
a correlation suggestive of a decrease in hippocampal 
mediated molecular neuropathology. 

The superpixel positivity generated from QuPath was 
graphed against the R2 values obtained from the box maze 
grading to determine the relationship between escape 
latency and hippocampal protein expression. Using the 
Pearson Correlation coefficient and P-value, each staining 
group was compared to the total percentage of positive 
superpixels. MCP-1 had a negative Pearson Coefficient of 
-0.90 and a P-value of < 0.0001 (Figure 6A) which indi-
cates that there is a strong negative correlation with super-
pixel positivity as the R2 value increases. This is sugges-
tive of lower inflammation levels in mice that were faster 
in learning the maze. HDAC2 also had a negative Pearson 
Coefficient value of -0.84 and a P-value of < 0.0001 
(Figure 6B) which indicates a strong negative correlation 

of superpixel positivity with decreasing R2 value. Since 
HDAC2 is a deacetylase complex, this association is sug-
gestive of higher levels of transcriptional repression in 
DNA products that ultimately impaired learning in mice. 
Synaptic markers BDNF and Synaptophysin have opposite 
results in that both showed a strong statistically significant 
positive correlation in superpixel positivity and R2 value 
(Figure 6C and D). BDNF has a Pearson coefficient of 
0.91 and a P-value of < 0.0001 which shows that synaptic 
plasticity according to positive superpixel was increased 
in fast learning mice. Synaptophysin also showed similar 
results, as it had a Pearson coefficient of 0.97 and was 
statistically significant with a P-value of < 0.0001. This 
is indicative of increased synaptic plasticity according to 
positive superpixel values in mice that are faster learners. 
The correlations for all listed stains were statistically sig-
nificant as indicated by their P-values. Direct comparison 
of individual escape latency values with the individual 
QuPath superpixel positivity percentage shows that the 
box maze grading platform and the immunohistochemis-
try data are consistent with each other. This comparison 
reveals that fast learners in the maze generally exhibit 
lower levels of inflammation and histone deacetylation, 
while synaptic plasticity and function are increased. These 
results, therefore, offer a statistically significant and novel 
way to measure levels of neural molecules in mice after 
being run through the box maze. These escape latencies 
can then easily be compared with QuPath positive super-
pixels as a quick way of investigating molecular pathways 
of learning impairment in the hippocampus.  

Discussion

The grading platform for learning in mice is an effec-
tive way to separate slow from fast learners in the spatial 
navigation Box maze. With the R2 threshold set at 0.74 
through averaging the escape latencies of n = 80 control 
mice, results of the grading platform produce a single 
value that can easily be compared to numbers of other 
variables of interest. Ultimately, the grading gives an R2 

value that captures the totality of the Box maze results 
(escape latency for four trials) for each individual mouse. 
This platform is also effective in separating fast and 
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control populations that were run through the Box maze. 
Through this analysis, we found that n = 6 mice out of 
n = 20 that were sleep deprived were graded as fast learn-
ers in the platform. Control mice, as expected, had results 
that showed a higher proportion of fast learners n = 15 to 
slow learners n = 5. 
The results from the grading platform indicate that the 
separation process yields expected results that can then 
be used for further investigation of different processes. 
Through utilizing immunohistochemistry, the results have 
shown that the grading platform in combination with the 
short-term sleep deprivation Box maze protocol produces 
results that are suggestive of a hippocampal learning 
impairment in slow learning mice. These results can be 
quickly visualized through a QuPath heat map that shows 
a difference in superpixel positivity among the different 
staining groups generated through the grading platform. 
Although the exact neural mechanisms of sleep depriva-
tion were not investigated in this project, the heat map of 
the immunohistochemistry stains provides evidence of 
positive staining in regard to location and intensity based 
on the novel idea of super pixels through QuPath, and 
provides a glimpse of the molecular pathway involved.
QuPath is a new software so there is still much to be ex-
plored and refined with analyzing protocols. Currently, 
a PubMed search only brings up a total of 22 papers in 
total that have used this program to analyze whole image 
slides. Additionally, because QuPath is only an analyzing 
software, it is critical that immunohistochemistry proto-
cols be performed in a uniform and consistent manner [32]. 
This would require careful planning of tissue harvesting, 
sectioning, and imaging that would allow for the best re-
sults. Further molecular analysis should be performed to 
confirm the QuPath data so that conclusions can be drawn 
on the molecular pathway associated with hippocampal 
learning impairment observed in sleep deprived mice. 
QuPath was able to show a significant correlation between 
positive super pixels and box maze learning times through 
the R2 value. These observations are therefore a valuable 
insight into utilizing the Box maze learning classifica-
tion of slow or fast learners in future studies looking into 
resilience to environmental stressors of sleep deprivation. 
QuPath can also be used as a novel application to study 
correlations between positive super pixels in immunohis-
tochemistry slides from a variety of different protocols 
and tissues. 
We looked at four antibodies in this study: MCP-1, 
HDAC2, Synaptophysin, and BDNF. Through QuPath 
analysis, we found that levels of MCP-1 and HDAC in-
crease, while levels of Synaptophysin and BDNF decrease 
as learning latency increases. Future studies to determine 
if specific genes were over or underregulated to cause 
these differences could help elucidate the genetic path-
ways involved in resilience. Furthermore, it would be in-
teresting to see if there were some genetic differences be-
tween slow and fast learning mice that predisposed them 
to learning at their respective speeds. This could shed light 

on genetic predisposition to resilience and point to targets 
that could be studied in humans.
The model of short-term sleep deprivation in middle age 
is translationally relevant because older adults are ob-
served to have reduced sleep according to electroencepha-
lography (EEG) data in comparison to younger adults 
[33]. Mice 16-18 months old represent the general human 
population in their late 50’s and early 60’s [34]. This is an 
important age group to study resilience, as cognitive de-
cline is often seen shortly after midlife and occurs notice-
ably at ages 70 or higher [35]. Our study found significant 
differences in four protein levels between fast and slow 
learning mice. The data generated in this study suggest 
that mice can be used as models for sleep deprivation and 
resilience and offer valuable insight on the importance of 
intervention to attenuate the impacts of cognitive decline 
that is often observed in the older population.
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