Finding prodromal frailty in a community-dwelling healthy older cohort by survey of BDNF or hand grip strength classified by BMI

Mitsugu Hachisu\(^{a,b}\), Masahiro Hashizume\(^{c}\), Hisashi Kawai\(^{d}\), Hirohiko Hirano\(^{d}\), Motonaga Kojima\(^{d}\), Yoshinori Fujiwara\(^{d}\), Shuichi Obuchi\(^{d}\), Mari Kogo\(^{e}\), Masayuki Ohbayashi\(^{a,b}\), Noriko Koyama\(^{a}\), Miki Takenaka\(^{a}\), Kazushige Ihara\(^{a}\)

\(^{a}\) Department of Pharmaceutical Therapeutics, Division of Clinical Pharmacy, Pharmacy School, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
\(^{b}\) Showa University Research Institute for Sports and Exercise Science, 2-1-1 Fujigaoka, Aoba-ku, Yokohama 227-5818, Japan.
\(^{c}\) Department of Psychosomatic Medicine, School of Medicine, Toho University, 5-21-16 Oomori-nishi, Oota-ku, Tokyo 143-850, Japan.
\(^{d}\) Tokyo Metropolitan Institute of Gerontology; 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan.
\(^{e}\) Department of Social Medicine, Hirosaki University Graduate School of Medicine, 1 Bunkyou-chou, Hirosaki City, Aomori Pref. 036-8560, Japan.

Abstract

Background: Frailty, which is losing body weight or lean body mass, experiencing fatigue and loss of strength or endurance, can easily result in falls and fractures with hospitalization and bedridden conditions. Brain-derived neurotrophic factor (BDNF), which is involved in neurogenesis, phenotypic differentiation, and neuronal survival, is gaining traction in the field of gerontology research as a relevant factor in cognition and vitality in the older population. We studied a distribution of mean BDNF levels or hand grip strengths according to BMI classification, and found the lowest BMI class of thin category had significantly (p < 0.01) lower mean BDNF level or mean hand grip strength than in the normal or obese 1 category of BMI. Therefore we defined the lowest BMI category “thin” as “prodromal frailty”, but not pre-frailty. We report the findings of “prodromal frailty” and discuss how to prevent this stage from advancing to frailty.

Methods: We measured serum BDNF concentrations, BMI and various health parameters in 805 elderly (aged 65–84) regional health examination participants from the Tokyo area. Their serum BDNF levels and grip strengths were divided according to BMI classification.

Results: The mean serum BDNF levels increased linearly according to BMI categorization from thin (< 18.4 kg/m\(^2\)) to obese 2 (30–34.9 kg/m\(^2\)) and decreased in the obese 3 group (35–39.9 kg/m\(^2\)). The mean serum BDNF level in the thin category was significantly lower than that in the normal category (p < 0.01). The BDNF levels in the obese 1 and obese 2 categories did not differ significantly from that in the normal category. Mean hand grip strength (kg) was also similarly distributed to the mean BDNF level distribution in the classified BMIs.

Conclusion: Older people in the thin BMI category had significantly lower serum BDNF levels and weaker hand grip strength than those in the normal or slightly obese categories, placing them in the condition of “prodromal frailty” but not pre-frailty.

Keywords: Frailty, body mass index, brain-derived neurotrophic factor, health examination, hand grip strength

Introduction

Brain-derived neurotrophic factor (BDNF) which plays a role in neurogenesis, phenotypic differentiation, and neuronal survival, is reported to be related to depression and Alzheimer’s disease [1-4]. It was found that serum BDNF
Taking medicines other than hypnotics were not different from participants taking no medicines.

Methods

Participants

Participants undergoing medical health examinations were recruited by the Tokyo Metropolitan Institute of Gerontology as previously described [10]. Briefly, we sent a letter to 7,162 community-dwelling elderly individuals aged 65–84 years to invite them to participate in a medical health examination in the Tokyo area; of these 805 participants were willing to undergo the examination. We used a “yes” or “no” questionnaire to investigate past diseases, and the use of medicines was classified into the following categories: “taking no medicines”, “taken within one year”, and “taken for more than one year”.

We obtained informed consent to perform the medical health examination, including blood collection, following oral explanations provided before the examination. Subjects with low basic activities of daily living (ADL) based on Katz Index under 3 points, severe visual and auditory disorders, severe post-stroke symptoms, and cognitive impairment with MMSE (Mini-mental state examination) scores under 24 were excluded [10].

We assert that all procedures contributing to this study complied with the ethical standards of the relevant national committees on human experimentation. The study was conducted in accordance with the Declaration of Helsinki (as revised in Brazil 2013), and the protocol was approved by the Ethics committee of the Showa University School of Pharmacy (Approval No. 160, August 4, 2012).

Measurements of BMI, %BFM, and hand grip strength

Total body fat mass was measured using a Well-scan multi-frequency bioelectrical impedance analyzer (Elk Corporation, Japan) and expressed as %BFM. BMI was calculated as body weight (kg)/height (m²). Handgrip strength was measured once in each hand using a Smedley grip dynamometer (As One, Osaka, Japan) before the blood withdrawing and the higher value was incorporated for the data.

Measurement of serum BDNF concentrations

Blood was drawn at the end of health examinations and was centrifuged 1,500 x g, at 4 degrees centigrade for 15min. The sera were transferred to a new set of polyethylene tubes and stored at -80 degrees centigrade until measurement. The serum BDNF levels were measured by an enzyme-linked immunosorbent assay using the BDNF Emax immunoassay system (Promega Corp., Madison, WI, USA.) according to the supplier protocol [10]. All samples were assayed in duplicate.

Statistical analysis

We used Student’s t-tests to compare hand grip strength...
between male and female, and an analysis of variance (ANOVA) to compare BDNF levels across BMI or %BFM categories and hand grip strengths across BMI categories. Then, the BDNF level or hand grip strength in each BMI class was analyzed with multiple comparisons using the Bonferroni correction. The differences were considered statistically significant when they had p < 0.05. We used PASW Statistics for Windows, version 18.0 to perform all statistical analyses (SPSS Inc., Chicago, IL, USA).

Results

Serum mean BDNF levels in each BMI classification

We re-analyzed the distribution of mean serum BDNF levels according to BMI classification. The BMI was classified as thin (< 18.4 kg/m²), normal (18.5–24.9 kg/m²), obese 1 (25.0–29.9 kg/m²), obese 2 (30.0–34.9 kg/m²), obese 3 (35–39.9 kg/m²) and obese 4 (over 40 kg/m²) based on the JASSO classification [11]. The distribution of subjects among the BMI categories is summarized in Table 1. The mean serum BDNF levels increased linearly from thin to obese 2, then decrease in the obese 3 category (Figure 1). The mean serum BDNF level in the normal category was significantly (p < 0.01) higher than that in the thin category, while it is not significant from obese 1 category or obese 2 category, respectively (Figure 1). Moreover, the BDNF levels in the thin category were also significantly lower than those in the obese 1 (p < 0.01) and obese 2 (p < 0.05) categories.

Serum mean BDNF levels in %BFM classifications

We analyzed the distribution of mean serum BDNF concentrations across %BFM categories. %BFM was classified according to 5% point intervals from below 14.9% to over 40% using a modified %BFM chart described by Tanita [12]. The distribution of subjects based on %BFM classification is shown in Table 2. The mean

Table 1. Distribution of subjects depending on BMI classification. The BMI classification and the category are followed by Japanese Society for the Study of Obesity [11].

<table>
<thead>
<tr>
<th>BMI classification</th>
<th>Category</th>
<th>Number of subjects (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 18.4</td>
<td>thin</td>
<td>67 (8.3%)</td>
</tr>
<tr>
<td>18.5–24.9</td>
<td>normal</td>
<td>548 (68.1%)</td>
</tr>
<tr>
<td>25–29.9</td>
<td>obese 1</td>
<td>165 (20.5%)</td>
</tr>
<tr>
<td>30–34.9</td>
<td>obese 2</td>
<td>20 (2.5%)</td>
</tr>
<tr>
<td>35–39.9</td>
<td>obese 3</td>
<td>5 (0.6%)</td>
</tr>
<tr>
<td>> 40</td>
<td>obese 4</td>
<td>0 (0%)</td>
</tr>
</tbody>
</table>

Table 2. Distribution of subjects depending on BMI classification. The %BFM was classified with the 5% point of steps, and it is categorized by the modified %BFM chart described by Tanita [12].

<table>
<thead>
<tr>
<th>%BFM classification</th>
<th>Category</th>
<th>Number of subjects (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 14.9</td>
<td>thin</td>
<td>24 (3.0%)</td>
</tr>
<tr>
<td>15–19.9</td>
<td>standard [-]</td>
<td>68 (8.5%)</td>
</tr>
<tr>
<td>20–24.9</td>
<td>standard [+]</td>
<td>176 (21.8%)</td>
</tr>
<tr>
<td>25–29.9</td>
<td>pre-obese</td>
<td>244 (30.3%)</td>
</tr>
<tr>
<td>30–34.9</td>
<td>obese i</td>
<td>201 (25.0%)</td>
</tr>
<tr>
<td>35–39.9</td>
<td>obese ii</td>
<td>78 (9.7%)</td>
</tr>
<tr>
<td>> 40</td>
<td>obese iii</td>
<td>14 (1.7%)</td>
</tr>
</tbody>
</table>

Figure 1. Serum BDNF levels in each BMI classification. The BDNF levels in each BMI category were expressed mean ± SD and analyzed by ANOVA (Levene’s test F value 2.1783, p = 0.0697). Multiple comparison was performed using the Bonferroni correction. The data is expressed when compared with the normal BMI category of 18.5–24.9 kg/m². **p < 0.01, NS: no significant. BDNF: brain-derived neurotrophic factor, BMI: body mass index.
%BFM values did not differ between men and women in our older cohort (27.7 ± 7.4% [n = 304] and 27.2 ± 6.2 % [n = 501], respectively). As the mean ± SD %BFM of males and females was almost the same in the present cohort, we employed the modified Tanita’s classification of %BFM for male aged 60 and higher [12] to categorize the cohort irrespective of gender. The mean serum BDNF levels in each %BFM category increased linearly from under 14.9%BFM to over 40%BFM. However, the mean serum BDNF level in the under 14.9%BFM category (7.6 ± 3.0 ng/mL) was not significantly different from that in the other %BFM categories (Figure 2).

Hand grip strength in each classified BMI

The mean hand grip strength in our cohort was 25.5 ± 7.84 kg, exhibiting a significant difference (p < 0.01) between males (32.1 ± 6.99 kg) and females (21.21 ± 4.75 kg). The distributions of mean hand grip strengths in the classified BMI category from thin to obese 3 are shown in Figure 3. The mean hand grip strength in the thin BMI category (21.4 ± 6.4 kg) was significantly (p < 0.01) lower than that in the normal BMI (25.4 ± 5.4 kg), obese 1 and obese 2 categories. Further, the mean hand grip strength in the normal BMI category was significantly lower than that in the obese 1 category (p < 0.05). Hence, hand grip strength was lowest in the thin BMI category (Figure 3).

Figure 2. Serum BDNF levels at %BFM classifications at 5% steps from < 14.9% to > 40.0. The BDNF levels in each %BFM category were expressed as mean ± SD and analyzed by ANOVA (Levene’s test F value 0.5393, p = 0.7785). Multiple comparison was performed using the Bonferroni correction. There was no significance when compared with the %BFM of < 14.9%.

Figure 3. Hand grip strengths (kg) in each BMI classification. The hand grip strengths in each BMI category were expressed mean ± SD and analyzed by ANOVA (Levene’s test F value 3.2310, p < 0.01). Multiple comparison was performed using the Bonferroni correction. The data is expressed when compared with the normal BMI category of 18.5–24.9 kg/m².

p < 0.01, *p < 0.05, NS: no significant. BDNF: brain-derived neurotrophic factor, BMI: body mass index.
Discussion

The mean ± SD BMI in this cohort of community-dwelling individuals in the Tokyo area was 22.8 ± 3.4 kg/m² (23.1 ± 3.1 kg/m² in male and 22.6 ± 3.2 kg/m² in female participants). The reported BMIs among community-dwelling individuals aged 60 years and over in rural and urban areas of Indonesia were 22.7 ± 2.2 and 24.9 ± 3.4 kg/m², respectively [13]. In the Programa Municipal da Terceira Idade (PMTI) program in Vicsao, Minas Gerais, Brazil, the mean BMI was 27.4 kg/m² among those aged 60 years and over (average 72 years), and about half were overweight [14]. The BMI in the current cohort of community-dwelling individuals in the Tokyo area was close to that in the rural area of Indonesia and lower than that in Brazil. Assessment of the distributions of the participants by BMI classification showed that 68.1% and 8.3% were the normal and thin categories, respectively, among those aged 65–84 years in the Tokyo area (Table 1). Among 12,544 participants of the US National Health and Nutrition Examination Survey (NHANES) aged over 20 years, 1.4% and 30.6% were in the thin and normal BMI categories [15], proportions 1/6 and 1/2 those in our cohort, respectively.

The mean ± SD %BFM in our cohort was 27.4 ± 6.3 % (male 27.7 ± 6.4 % and female 27.2 ± 6.2%), and was comparable between males and females. This cohort is unique as the %BFM in females is generally higher than that in males [12, 13]. The %BFM is increased with age in males and remained steady in females; therefore, the values were comparable between sexes [16].

In this study, the mean serum BDNF levels in classified BMI increased linearly from the thin to obese 2 BMI categories and decrease in the obese 3 category. Unexpectedly, the mean serum BDNF level in the thin category was significantly lower than that in the normal BMI category (p < 0.01). However the mean BDNF level in normal BMI is not significantly different from that in obese 1, obese 2 and obese 3, respectively.

Nanri et al. [17] reported results that were similar to our findings, they reported that the mean serum BDNF levels in the BMI categories from < 21.0 to > 27.0 showed significant positive correlation in Japanese participants aged 18-70. Unfortunately, there was no classification of thin (< 18.4) BMI category in this cohort. Moreover, findings consistent with our data on the positive correlation of serum BDNF and BMI were reported by Golden et al. [18] in older women (70.3 ± 0.76 years old) from the US and by Suwa et al. [19] in Japanese women with type 2 diabetes mellitus aged 34-59 years; however there were also no classification of thin BMI category in these reports. On the other hand, no correlation between plasma BDNF levels and BMI was reported in older people aged 60-81 years from the US [20].

With respect to %BFM and serum BDNF levels, a positive relationship was reported by the regression analysis in our previous report [10]. When we categorized the %BFM at 5% point interval from under 14.9% to over 40%, the mean BDNF level in the < 14.9%BFM category was not significantly different from that of the other categories. The accumulation of BFM influences various metabolic activities, especially obesity. Obesity tends to be insulin-resistant with the development of low-grade inflammation, including an increase in inflammatory cytokines such as interleukin 6 (IL-6) [21]. Inflammatory cytokines inhibit BDNF expression, thereby decreasing serum BDNF level [22]. Moreover, it has been reported that the circulating BDNF levels are decreased in patients with diabetes mellitus showing symptoms of nephropathy and retinopathy [23, 24]. Since Keys et al. [25] reported that there is a strong correlation between BMI and BFM, BMI is currently used as an index of obesity. Indeed, BMI was also well correlated with %BFM (r = 0.9912, p = 0.01) in our cohort, while there are some difference in the distribution pattern of mean BDNF levels in the BMI classification and those in %BFM classification as shown at results. Low BMI or BFM indicates thinness while low BMI indicates not only low BMI but also low muscle mass, as BMI is calculated as the body weight (kg) divided by the square of the height (m²). Muscle mass and BDNF levels are positively correlated [26], while increased BMI decreased BDNF levels through inflammation, as described above. Therefore, it can be interpreted by the previous logic that the BDNF level in the lowest BMI of the thin category was significantly lower than that in normal, obese 1 and obese 2 categories, while the BDNF level in the lowest %BFM category was not significantly different from other categories of %BFM.

Low muscle mass may cause sarcopenia and frailty. We observed significantly lower serum BDNF levels in the thin BMI category than that in the normal BMI category. Frailty is a condition characterized by weakness with low body weight and low activity that is sometimes also reported to include reduced mood and cognition [7]. Ingles et al. [8] reported lower plasma BDNF levels in frail individuals than those non-frail individuals, which was associated with lower cognition.

We observed significantly lower hand grip strength in the thin BMI category than that in the normal, obese 1, and obese 2 BMI categories. This pattern was similar to the distribution observed for serum BDNF levels according to BMI classification. The five frailty criteria proposed by Fried et al include “weakness: reduced hand grip strength” [6]. The thin BMI category showed low serum BDNF levels and weak hand grip strength. Moreover, individuals with frailty reportedly show low levels of circulating BDNF [8]. Therefore, individuals in the thin BMI category with low BDNF levels and weak hand grip strength in our cohort likely corresponded to “prodromal frailty” but not pre-frailty.

We previously reported higher serum BDNF concentrations in individuals with thick quadriceps muscles [10]. These individuals may receive adequate physical exercise in their daily lives. Physical exercise reportedly increases serum BDNF levels in both pre-frail and non-frail women.
Moreover, the authors suggested that BDNF levels may be a key pathophysiological mediator in frailty. Therefore, we first showed the presence of “prodromal frailty” in a healthy cohort of community-dwelling individuals with low BDNF levels, weak handgrip strength, and low BMI. Individuals in the thin category with low BDNF levels should start exercising and ingest proper nutrition with high protein levels to prevent frailty. Because, it is reported that the older adults with higher muscle mass showed a low mortality risk in a 10–16-year longitudinal follow-up study in the US [28]. Therefore, resistance training, especially hypertrophied resistance training, is recommended to increase muscle mass [29-31] at 8 to 12 reps per set for more than three sets [29]. Leg exercises; i.e., squats, are recommended for hypertrophied thigh muscle, one of the largest muscles in the body, for prevention of fall and slowed gait speed associated with frailty. Consumption of high protein and/or amino acid diets reverse frailty and increase strength and muscle mass with elevated levels of circulating BDNF [32].

There are some limitations in this study. The cohort was comprised of individuals who were interested in and paying attention to their health, who presented to the institute at their own volition and mostly by themselves. Therefore, the cohort may be representative of vital older people rather than average community-dwelling older individuals aged 65-84 years in the Tokyo area. Moreover, the observations were made on a single day rather than as part of a longitudinal study; therefore, BMI or %BFM changes in individuals do not explain their changes in BDNF level. BMI is a well-known assessment of the level of fat (obese) in the human body and it is calculated by an equation [body weight (kg) / height (m²)], therefore it also includes muscle mass. Therefore, we cannot conclusively show that the presence of “prodromal frailty” in the thin category of BMI depends on the level of muscle mass or BFM. However, due to the ease of calculating BMI, it was employed to analyze the presence of “prodromal frailty” in a large cohort.

In summary, older people in the thin BMI category had significantly lower serum BDNF levels and weaker hand grip strength than those in the normal or slightly obese categories. The thin category with findings of low BDNF levels and weak hand grip strength was designated as “prodromal frailty”.

Declarations

Acknowledgements: We acknowledge support for this study from a Health and Labor Sciences Research Grant (H23-Choju-Ippan-001, H23-Choju-Ippan-002) and a JSPS KAKENHI research Grant (grant number: 21590717). We would like to thank Editage (www.editage.com) for English language editing.

Authors’ Contributions: Conceptualization, M.H. and K.I.; data curation, H.K.; formal analysis, M.H. and M.H.; investigation, M.H., H.M., H.K., H.H., M.K., Y.F., S.O., M.K., M.O., N.K., M.T. and K.I.; project administration, H.K., H.H., M.K., Y.F., S.O., and K.I.; resources, S.O. and K.I.; writing—original draft, M.H.; writing—review & editing, M.H., M.K., M.O., N.K., M.T. and K.I. All authors have read and agreed to the published version of the manuscript.

Financial supports: We received support for this study from a Health and Labor Sciences Research Grant (H23-Choju-Ippan-001, H23-Choju-Ippan-002) and a JSPS KAKENHI research Grant (grant number: 21590717).

Conflicts of Interest: The authors declare no conflict of interest.

Ethical approval and informed consent: We assert that all procedures contributing to this study complied with the ethical standards of the relevant national committees on human experimentation. The study was conducted in accordance with the Declaration of Helsinki (as revised in Brazil 2013), and the protocol was approved by the Ethics committee of the Showa University School of Pharmacy (Approval No. 160, August 4, 2012). We obtained informed consent to perform the medical health examination, including blood collection, following oral explanations provided before the examination.

References

